题目内容
【题目】如图,在平面直角标系中,抛物线C:y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点D为y轴正半轴上一点.且满足OD=OC,连接BD,
(1)如图1,点P为抛物线上位于x轴下方一点,连接PB,PD,当S△PBD最大时,连接AP,以PB为边向上作正△BPQ,连接AQ,点M与点N为直线AQ上的两点,MN=2且点N位于M点下方,连接DN,求DN+MN+AM的最小值
(2)如图2,在第(1)问的条件下,点C关于x轴的对称点为E,将△BOE绕着点A逆时针旋转60°得到△B′O′E′,将抛物线y=沿着射线PA方向平移,使得平移后的抛物线C′经过点E,此时抛物线C′与x轴的右交点记为点F,连接E′F,B′F,R为线段E’F上的一点,连接B′R,将△B′E′R沿着B′R翻折后与△B′E′F重合部分记为△B′RT,在平面内找一个点S,使得以B′、R、T、S为顶点的四边形为矩形,求点S的坐标.
【答案】解:(1);(2)(,3+)或(﹣,)或(﹣2,2).
【解析】
(1)由抛物线解析式求点A、B、C坐标,由OD=OC求点D坐标.设点P横坐标为t,可用待定系数法求得用t表示的直线PB解析式,即能用t表示PB与y轴交点G的坐标,进而用t表示DG的长.以DG为界把△PBD分成左右两边的△PDG与△BDG,则以DG为底计算易求得△PBD面积与t的二次函数关系式,求对称轴即得到△PBD最大时t的值,进而得到点P坐标.求得∠ABP=30°,即x轴平分∠PBQ,故点P、Q关于x轴对称,得到点Q坐标,进而得到直线AQ解析式,发现∠QAB=∠PAB=60°.作直线AP,可得直线AQ与AP夹角为60°,过点M作MH⊥AP于H,即构造出特殊Rt△MAN,得到MH=AM.把点D平移到D',使DD'∥MN且DD'=MN,构造平行四边形MNDD',故DN=D'M.所以DN+MN+AM可转化为MN+D'M+MH.易得当点D'、M、H在同一直线上时,线段和会最短,即过D'作D'K⊥AP于K,D'K的值为所求.根据平移性质求D'坐标,求直线D'K与直线AP解析式,联立方程组求得K的坐标,即求得D'K的长.
(2)抛物线平移不改变开口方向和大小,再求得点E坐标和点A坐标,可用待定系数法求平移后的解析式,进而求得点F.由旋转性质可得△ABB'与△AEE'为等边三角形,求出点E'、B'坐标,B'F⊥x轴且△B'E'F为含30°的直角三角形.把点R从E'移动到F的过程,发现∠RB'T一定小于90°,不可能成为矩形内角,故只能是∠B'RT或∠B'TR=90°.点T可以在E'F上,也可以在B'F上,画出图形,根据含30°的直角三角形三边关系计算各线段长,即能求点S坐标.
解:(1)如图1,过点D作DD'∥MN,且DD'=MN=2,连接D'M;过点D'作D'J⊥y轴于点J;
作直线AP,过点M作MH⊥AP于点H,过点D'作D'K⊥AP于点K
∵y==0
解得:x1=﹣3,x2=1
∴A(﹣3,0),B(1,0)
∵x=0时,y==﹣
∴C(0,﹣),OC=
∴OD=OC=,D(0,)
设P(t, t2+t﹣)(﹣3<t<1)
设直线PB解析式为y=kx+b,与y轴交于点G
∴ 解得:
∴直线PB:y=(t+)x﹣t﹣,G(0,﹣t﹣)
∴DG=﹣(﹣t﹣)=t+
∴S△BPD=S△BDG+S△PDG=DGxB+DG|xP|=DGxB﹣xP)=(t+)(1﹣t)=﹣(t2+4t﹣5)
∴t=﹣=﹣2时,S△BPD最大
∴P(﹣2,﹣),直线PB解析式为y=x﹣,直线AP解析式为y=﹣x﹣3
∴tan∠ABP==
∴∠ABP=30°
∵△BPQ为等边三角形
∴∠PBQ=60°,BP=PQ=BQ
∴BA平分∠PBQ
∴PQ⊥x轴,PQ与x轴交点I为PQ中点
∴Q(﹣2,)
∴Rt△AQI中,tan∠QAI=
∴∠QAI=∠PAI=60°
∴∠MAH=180°﹣∠PAI﹣∠QAI=60°
∵MH⊥AP于点H
∴Rt△AHM=90°,sin∠MAH=
∴MH=AM
∵DD'∥MN,DD'=MN=2
∴四边形MNDD'是平行四边形
∴D'M=DN
∴DN+MN+AM=2+D'M+MH
∵D'K⊥AP于点K
∴当点D'、M、H在同一直线上时,DN+MN+AM=2+D'M+MH=2+D'K最短
∵DD'∥MN,D(0,)
∴∠D'DJ=30°
∴D'J=DD'=1,DJ=DD'=
∴D'(1,)
∵∠PAI=60°,∠ABP=30°
∴∠APB=180°﹣∠PAI﹣∠ABP=90°
∴PB∥D'K
设直线D'K解析式为y=x+d,
把点D'代入得: +d=
解得:d=
∴直线D'K:y=x+
把直线AP与直线D'K解析式联立得:
解得:
∴K(﹣,)
∴D'K=
∴DN+MN+AM的最小值为
(2)连接B'A、BB'、EA、E'A、EE',如图2
∵点C(0,﹣)关于x轴的对称点为E
∴E(0,)
∴tan∠EAB=
∴∠EAB=30°
∵抛物线C'由抛物线C平移得到,且经过点E
∴设抛物线C'解析式为:y=x2+mx+
∵抛物线C'经过点A(﹣3,0)
∴×9﹣3m+=0
解得:m=
∴抛物线C'解析式为:y=x2+x+
∵x2+x+=0,解得:x1=﹣3,x2=﹣1
∴F(﹣1,0)
∵将△BOE绕着点A逆时针旋转60°得到△B′O′E′
∴∠BAB'=∠EAE'=60°,AB'=AB=1﹣(﹣3)=4,AE'=AE=
∴△ABB'、△AEE'是等边三角形
∴∠E'AB=∠E'AE+∠EAB=90°,点B'在AB的垂直平分线上
∴E'(﹣3,2),B'(﹣1,2)
∴B'E'=2,∠FB'E'=90°,E'F=
∴∠B'FE'=30°,∠B'E'F=60°
①如图3,点T在E'F上,∠B'TR=90°
过点S作SW⊥B'E'于点W,设翻折后点E'的对应点为E'
∴∠E'B'T=30°,B'T=B'E'=
∵△B′E′R翻折得△B'E'R
∴∠B'E'R=∠B'E'R=60°,B'E'=B'E'=2
∴E'T=B'E'﹣B'T=2﹣
∴Rt△RTE'中,RT=E'T=2﹣3
∵四边形RTB'S是矩形
∴∠SB'T=90°,SB'=RT=2﹣3
∴∠SB'W=∠SB'T﹣∠E'B'T=60°
∴B'W=SB'=﹣,SW=SB'=3﹣
∴xS=xB'﹣B'W=,yS=yB'+SW=3+
∴S(,3+)
②如图4,点T在E'F上,∠B'RT=90°
过点S作SX⊥B'F于点X
∴E'R=B'E'=1,点E'翻折后落在E'F上即为点T
∴B'S=RT=E'R=1
∵∠SB'X=90°﹣∠RB'F=30°
∴XS=B'S=,B'X=B'S=
∴xS=xB'+XS=﹣,yS=yB'﹣B'X=
∴S(﹣,)
③如图5,点T在B'F上,∠B'TR=90°
∴RE'∥E'B',∠E'=∠B'E'R=60°
∴∠E'BE'=∠E'RE'=120°
∴四边形B'E'RE'是平行四边形
∵E'R=E'R
∴B'E'RE'是菱形
∴B'E'=E'R
∴△B'E'R是等边三角形
∵∠B'SR=90°,即RS⊥B'E'
∴点S为B'E'中点
∴S(﹣2,2)
综上所述,使得以B′、R、T、S为顶点的四边形为矩形的点S坐标为(,3+)或(﹣,)或(﹣2,2).
【题目】工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,请将下列过程补充完整:
收集数据:
从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:
整理、描述数据:
按如下分数段整理、描述这两组样本数据:
成绩 人数 部门 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 0 | 0 | 1 | 11 | 7 | 1 |
乙 |
(说明:成绩80分及以上为生产技能优秀,70—79分为生产技能良好,60—69分为生产技能合格,60分以下为生产技能不合格)
分析数据:
两组样本数据的平均数、中位数、众数如下表所示:
部门 | 平均数 | 中位数 | 众数 |
甲 | 78.3 | 77.5 | |
乙 | 78 | 81 |
得出结论:
.估计乙部门生产技能优秀的员工人数约为 .
.可以推断出 部门员工的生产技能水平高.理由为 .
(至少从两个不同的角度说明推断的合理性)
【题目】某种水果按照果径大小可分为4个等级:标准果、优质果、精品果、礼品果,某采购商从采购的一批该种水果中随机抽取100个,利用它的等级分类标准得到的数据如下:
等级 | 标准果 | 优质果 | 精品果 | 礼品果 |
个数 | 10 | 30 | 40 | 20 |
用样本估计总体,果园老板提出两种购销方案给采购商参考,
方案1:不分类卖出,售价为20元/个;
方案2:分类卖出,分类后的水果售价如下:
等级 | 标准果 | 优质果 | 精品果 | 礼品果 |
售价(元/个) | 16 | 18 | 22 | 24 |
(1)从采购商的角度考虑,应该采用哪种购销方案?
(2)若采购商采购的该种水果的进价不超过20元/个,则采购商可以获利,现从这种水果的4个等级中任选2种,按方案2进行购买,求这2种等级的水果至少有一种能使采购商获利的概率.
【题目】某大学为了解学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行了评分,统计如下:
人数 满意度评分 餐厅 | 非常满意 | 较满意 | 一般 | 不太满意 | 非常不满意 | 合计 |
A | 28 | 40 | 10 | 10 | 12 | 100 |
B | 25 | 20 | 45 | 6 | 4 | 100 |
若小芸要在A,B两家餐厅中选择一家用餐,根据表格中数据,你建议她去_____餐厅(填A或B),理由是_____.