题目内容
如图, 边长是5的正方形内, 半径为2的⊙与边和
相切, ⊙与⊙外切于点, 并且与边和相切. 是两圆的内公切线, 点和分别在和上. 则的长等于 _______ .
相切, ⊙与⊙外切于点, 并且与边和相切. 是两圆的内公切线, 点和分别在和上. 则的长等于 _______ .
试题分析:由题意分析可知,设AB交圆N于点P,交AD于点Q
所以FP=EQ
点评:圆与圆的位置关系判断条件,确定位置关系.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离,则d>R+r;外切,则d=R+r;相交,则R-r<d<R+r;内切,则d=R-r;内含,则d<R-r.
练习册系列答案
相关题目