题目内容
【题目】如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D,点O是AB边上一点,以O为圆心作⊙O且经过A,D两点,交AB于点E.
(1)求证:BC是⊙O的切线;
(2)AC=2,AB=6,求BE的长.
【答案】(1)证明见解析;(2)3.
【解析】试题分析:(1)连接OD,根据角平分线的定义和等腰三角形的性质证明OD∥AC,根据平行线的性质得到∠BOD=90°,根据切线的判定定理证明;
(2)由OD∥AC可证△BDO∽△BCA,由相似三角形的性质得.设OD=r,则BO=6﹣r,代入比例式求出r,从而求出BE的值.
(1)证明:连结OD,∵OA=OD,∴∠OAD=∠ODA.
∵AD平分∠BAC,∴∠CAD=∠OAD,∴∠CAD=∠ODA,∴OD∥AC.
∵∠ACB=90°,∴∠ODB=90°.
即OD⊥BC于D,∴BC是⊙O的切线.
(2)∵OD∥AC,∴△BDO∽△BCA,∴ .
∵AC=2,AB=6,∴设OD=r,则BO=6﹣r,∴ .
解得r=,∴AE=3,∴BE=3.
练习册系列答案
相关题目