题目内容
【题目】如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(-1,2),AB⊥x轴于点E,正比例函数y=mx的图像与反比例函数的图像相交于A,P两点。
(1)求m,n的值与点A的坐标;
(2)求证:∽
(3)求的值
【答案】(1),,点的坐标是;(2)见解析;(3).
【解析】
(1)根据点P的坐标,利用待定系数法可求出m,n的值,利用正、反比例函数图象的对称性结合点P的坐标找出点A的坐标即可解答;
(2)由菱形的性质可得出AC⊥BD,AB∥CD,利用平行线的性质可得出∠DCP=∠OAE,结合AB⊥x轴可得出∠AEO=∠CPD=90°,进而即可证出△CPD∽△AEO;
(3)由点A的坐标可得出AE,OE,AO的长,由相似三角形的性质可得出∠CDP=∠AOE,再利用正弦的定义即可求出sin∠CDB的值.
解:(1)∵正比例函数,反比例函数均经过点,
∴,,
解得:,.
∴正比例函数,反比例函数.
又正比例函数与反比例函数均是中心对称图形,则其两个交点也成中心对称点,
∵,
∴点的坐标是.
(2)证明:∵四边形ABCD是菱形,
∴AC⊥BD,AB∥CD,
∴∠DCP=∠BAP,即∠DCP=∠OAE.
∵AB⊥x轴,
∴∠AEO=∠CPD=90°,
∴△CPD∽△AEO.
(3)∵点的坐标是.
∴,,
∴,
∵,
∴△CPD∽△AEO,
∴.
【题目】在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共5只,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.表是活动进行中的一组统计数据:
摸球的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次数m | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的频率 | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
(1)请估计:当n很大时,摸到白球的频率将会接近 ;随机摸出一个球,摸到白球的概率是 ,摸到黑球的概率是 ;
(2)试估算:口袋中黑球的个数 ,白球的个数 ;
(3)从口袋中任意摸出一个球,记下颜色后放回口袋中搅拌均匀,再任意摸出一个球,两次摸到的球的颜色正好相同的概率为多少?