题目内容
【题目】如图,过直线上一点作轴于点,线段交函数的图像于点,点为线段的中点,点关于直线的对称点的坐标为.
(1)求、的值;
(2)求直线与函数图像的交点坐标;
(3)直接写出不等式的解集.
【答案】(1)3,;(2)(2,);(3)0<x<
【解析】
(1)根据点C′在反比例函数图像上求出m值,利用对称性求出点C的坐标,从而得出点P坐标,代入一次函数表达式求出k值;
(2)将两个函数表达式联立,得到一元二次方程,求解即可;
(3)根据(2)中交点坐标,结合图像得出结果.
解:(1)∵C′的坐标为(1,3),
代入中,
得:m=1×3=3,
∵C和C′关于直线y=x对称,
∴点C的坐标为(3,1),
∵点C为PD中点,
∴点P(3,2),
将点P代入,
∴解得:k=;
∴k和m的值分别为:3,;
(2)联立:,得:,
解得:,(舍),
∴直线与函数图像的交点坐标为(2,);
(3)∵两个函数的交点为:(2,),
由图像可知:当0<x<时,反比例函数图像在一次函数图像上面,
∴不等式的解集为:0<x<.
练习册系列答案
相关题目