题目内容
【题目】如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径作弧,两弧交于点M、N;第二步,过M、N两点作直线分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=8,AF=6,CD=4,则BE的长是( )
A. 12B. 11C. 13D. 10
【答案】A
【解析】
根据已知得出MN是线段AD的垂直平分线,推出AE=DE,AF=DF,求出DE∥AC,DF∥AE,得出四边形AEDF是菱形,根据菱形的性质得出AE=DE=DF=AF,根据平行线分线段成比例定理得出,代入求出即可.
∵根据作法可知:MN是线段AD的垂直平分线,
∴AE=DE,AF=DF,
∴∠EAD=∠EDA,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠EDA=∠CAD,
∴DE∥AC,
同理DF∥AE,
∴四边形AEDF是菱形,
∴AE=DE=DF=AF,
∵AF=4,
∴AE=DE=DF=AF=4,
∵DE∥AC,
∴,
∵BD=8,AE=6,CD=4,
∴,
∴BE=12,
故选A.
练习册系列答案
相关题目