题目内容
【题目】在同一直角坐标系中,抛物线C1:2与抛物线C2:2关于轴对称,C2与轴交于A、B两点,其中点A在点B的左侧交y轴于点D.
(1)求A、B两点的坐标;
(2)对于抛物线C2:2在第三象限部分的一点P,作PF⊥轴于F,交AD于点E,若E关于PD的对称点E′恰好落在轴上,求P点坐标;
(3)在抛物线C1上是否存在一点G,在抛物线C2上是否存在一点Q,使得以A、B、G、Q四点为顶点的四边形是平行四边形?若存在,求出G、Q两点的坐标;若不存在,请说明理由.
【答案】(1)A(﹣3,0),B(1,0);(2),;(3)存在满足条件的点G、Q,其坐标为G(﹣2,5),Q(2,5)或G(2,﹣3),Q(﹣2,﹣3)或G(,﹣2),Q(﹣2﹣,2)或G(﹣,2),Q(﹣2+,﹣2).
【解析】
(1)由对称可求得、的值,则可求得两函数的对称轴,可求得的值,则可求得两抛物线的函数表达式;由C2的函数表达式可求得A、B的坐标;
(2)可判定四边形PEDE′是菱形,然后根据PE=DE的条件,列出方程求解;
(3)由题意可知AB可能为平行四边形的边或对角线,利用平行四边形的性质,可设出G点坐标和Q点坐标,代入C2的函数表达式可求得G、Q的坐标.
(1)∵C1、C2关于y轴对称,
∴C1与C2的交点一定在轴上,且C1与C2的形状、大小均相同,
∴=1,=﹣3,
∴C1的对称轴为=1,
∴C2的对称轴为=,
∴=2,
∴C1的函数表示式为2,C2的函数表达式为2;
在C2的函数表达式为2中,令=0可得2,
解得或,
∴A(﹣3,0),B(1,0);
(2)∵点E、E′关于直线PD对称,
∴∠EPD=∠E′PD,DE=DE′,PE=PE′.
∵PE平行于y轴,∴∠EPD=∠PDE′,
∴∠E′PD=∠PDE′,
∴PE′=DE′,
∴PE=DE=PE′=DE′,
即四边形PEDE′是菱形.
当四边形PEDE′是菱形存在时,由直线AD解析式,∠ADO=45°,
设P(,2),E(,),
∴DE=﹣,PE=﹣32+3=﹣23,
∴﹣23,解得a1=0(舍去),a2=,
∴P().
(3)存在.
∵AB的中点为(﹣1,0),且点G在抛物线C1上,点Q在抛物线C2上,
当AB为平行四边形的一边时,
∴GQ∥AB且GQ=AB,
由(2)可知AB=1(﹣3)=4,
∴GQ=4,
设G(t,t22t3),则Q(t+4,t2t3)或(t4,t22t3),
①当Q(t+4,t2+2t3)时,则t22t3=(t+4)2+2(t+4)3,
解得t=﹣2,
∴t22t3=4+43=5,
∴G(﹣2,5),Q(2,5);
②当Q(t4,t22t3)时,则t22t3=(t4)2+2(t4)3,
解得t=2,
∴t22t3=443=﹣3,
∴G(2,﹣3),Q(﹣2,﹣3),
当AB为平行四边形的对角线时,设G(m,m22m3),Q(n,n2+2n3),
∴
解得m=,n=﹣2或m=﹣,n=﹣2+,
∴G(,﹣2),Q(﹣2﹣,2)或G(﹣,2),Q(﹣2+,﹣2).
综上可知,存在满足条件的点G、Q,其坐标为G(﹣2,5),Q(2,5)或G(2,﹣3),Q(﹣2,﹣3)或G(,﹣2),Q(﹣2﹣,2)或G(﹣,2),Q(﹣2+,﹣2).