题目内容

【题目】如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k≠0)上,则k的值为(  )

A.4
B.-2
C.
D.-

【答案】D
【解析】如图,设点C的坐标为(x,y),过点C作CD⊥x轴,作CE⊥y轴,∵将△ABO沿直线AB翻折,
∴∠CAB=∠OAB=30°,AC=AO=2,∠ACB=AOB=90°,∴CD=y=ACsin60°=2×=,∵∠ACB=∠DCE=90°,∴∠BCE=∠ACD=30°,
∵BC=BO=AOtan30°=2×=,CE=x=BCcos30°==1,∵点C恰好落在双曲线y=(k≠0)上,∴k=xy=﹣1×=﹣
故选D.

【考点精析】解答此题的关键在于理解翻折变换(折叠问题)的相关知识,掌握折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网