题目内容

【题目】如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2=(x>0)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:
①SADB=SADC
②当0<x<3时,y1<y2
③如图,当x=3时,EF=
④当x>0时,y1随x的增大而增大,y2随x的增大而减小.
其中正确结论的个数是(  )

A.1
B.2
C.3
D.4

【答案】C
【解析】解:对于直线y1=2x﹣2,
令x=0,得到y=2;令y=0,得到x=1,
∴A(1,0),B(0,﹣2),即OA=1,OB=2,
在△OBA和△CDA中,

∴△OBA≌△CDA(AAS),
∴CD=OB=2,OA=AD=1,
∴S△ADB=S△ADC(同底等高三角形面积相等),选项①正确;
∴C(2,2),
把C坐标代入反比例解析式得:k=4,即y2=
由函数图象得:当0<x<2时,y1<y2 , 选项②错误;
当x=3时,y1=4,y2=,即EF=4﹣=,选项③正确;
当x>0时,y1随x的增大而增大,y2随x的增大而减小,选项④正确,
正确的是:①③④.
故选C
对于直线解析式,分别令x与y为0求出y与x的值,确定出A与B坐标,利用AAS得到三角形OBA与三角形CDA全等,利用全等三角形对应边相等得到CD=OB,确定出C坐标,代入反比例解析式求出k的值,确定出反比例解析式,由图象判断y1<y2时x的范围,以及y1与y2的增减性,把x=3分别代入直线与反比例解析式,相减求出EF的长,即可做出判断.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网