题目内容
【题目】如图,在中,于点,过点作与边相切于点,交于点为的直径.
(1)求证:;
(2)若,求的长.
【答案】(1)证明见解析;(2)
【解析】
(1)根据圆的切线的性质得出CE⊥AB,然后进一步利用AB=AC和AD⊥BC证明得BD=DC,从而根据三角形中位线性质得知OD∥EB,由此即可证明结论;
(2)连接EF,首先根据题意得出∠BEF+∠FEC=∠FEC+∠ECF=90°,由此求出∠ECF=∠BEF,再者利用三角函数得出,从而求出EF,再利用勾股定理求得BE,最后利用平行线分线段成比例的性质进一步求解即可.
(1)∵与边AB相切于点E,且CE为的直径,
∴CE⊥AB,OE=OC,
∵AB=AC,AD⊥BC,
∴BD=DC,
又∵OE=OC,
∴OD是△BCE的中位线,
∴OD∥EB,
∴OD⊥CE;
(2)如图,连接EF,
∵CE为的直径,且点F在上,
∴∠EFC=90°,
∵CE⊥AB,
∴∠BEC=90°,
∴∠BEF+∠FEC=∠FEC+∠ECF=90°,
∴∠ECF=∠BEF,
∴tan∠BEF=tan∠ECF,
∴,
又∵DF=1,BD=DC=3,
∴BF=2,FC=4,
∴,
∴EF=,
∵∠EFC=90°,
∴∠BFE=90°,
由勾股定理可得:BE=,
∵AD⊥BC且∠EFC=90°,
∴EF∥AD,
∴,
∴AE=.
【题目】某种型号的电热水器工作过程如下:在接通电源以后,从初始温度20下加热水箱中的水,当水温达到设定温度60时,加热停止;此后水箱中的水温开始逐渐下降,当下降到保温温度30时,再次自动加热水箱中的水至60,加热停止;当水箱中的水温下降到30时,再次自动加热,……,按照以上方式不断循环.小宇根据学习函数的经验,对该型号电热水器水箱中的水温随时间变化的规律进行了探究,发现水温是时间的函数,其中(单位:)表示水箱中水的温度,(单位:)表示接通电源后的时间.下面是小宇的探究过程,请补充完整:
(1)小宇记录了从初始温度20第一次加热至设定温度60,之后水温冷却至保温温度30的过程中,随的变化情况,如下表所示:
接通电源后的时间() | 0 | 2 | 4 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | … |
水箱中水的温度() | 20 | 30 | 40 | 60 | 51 | 45 | 40 | 36 | 33 | 30 |
①请写出一个符合加热阶段与关系的函数解析式______________;
②根据该电热水器的工作特点,当第二次加热至设定温度60时,距离接通电源的时间为________.
(2)根据上述的表格,小宇画出了当时的函数图象,请根据该电热水器的工作特点,帮他画出当时的函数图象.
(3)已知适宜人体沐浴的水温约为,小宇在上午8点整接通电源,水箱中水温为20,热水器开始按上述模式工作,若不考虑其他因素的影响,请问在上午9点30分时,热水器的水温______(填“是”或“否”)适合他沐浴,理由是_________________.