题目内容
【题目】如图矩形ABCD中,AD=1,CD= ,连接AC,将线段AC、AB分别绕点A顺时针旋转90°至AE、AF,线段AE与弧BF交于点G,连接CG,则图中阴影部分面积为 .
【答案】 ﹣
【解析】解:在矩形ABCD中, ∵AD=1,CD= ,
∵AC=2,tan∠CAB= = ,
∴∠CAB=30°,
∵线段AC、AB分别绕点A顺时针旋转90°至AE、AF,
∴∠CAE=∠BAF=90°,
∴∠BAG=60°,
∵AG=AB= ,
∴阴影部分面积=S△ABC+S扇形ABG﹣S△ACG= × ×1+ ﹣ × ×2= ﹣ ,
故答案为: ﹣ .
根据勾股定理得到AC=2,由三角函数的定义得到∠CAB=30°,根据旋转的性质得到∠CAE=∠BAF=90°,求得∠BAG=60°,然后根据图形的面积即可得到结论.
练习册系列答案
相关题目