题目内容

【题目】如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B,记点B关于抛物线对称轴的对称点为C(点B,点C不重合).连接CB,CP.

(1)当m= 时,求点A的坐标及BC的长;
(2)当m>1时,连接CA,当CA⊥CP时,求m的值;
(3)过点P作PE⊥PC且PE=PC,问是否存在m,使得点E恰好落在坐标轴上?若存在,请直接写出所有满足条件的点E的坐标;若不存在,请说明理由.

【答案】
(1)

解:当m= 时,y=﹣x2+5x;

令y=0,得﹣x2+5x=0.

∴x1=0,x2=5,

∴A(5,0).

当x=1时,y=4,

∴B(1,4).

∵抛物线y=﹣x2+5x的对称轴为直线x=

又∵点B,C关于对称轴对称,

∴BC=3


(2)

解:过点C作CH⊥x轴于点H(如图).

由已知得∠ACP=∠BCH=90°

∴∠ACH=∠PCB.

又∵∠AHC=∠PBC=90°,

tan∠ACH=tan∠PCB.

∵抛物线y=﹣x2+2mx的对称轴为直线x=m,其中m>1,

又∵B,C关于对称轴对称,

∴BC=2(m﹣1).

∵B(1,2m﹣1),P(1,m),

∴BP=m﹣1.

又∵A(2m,0),C(2m﹣1,2m﹣1),

∴H(2m﹣1,0).

∴AH=1,CH=2m﹣1.

∴m=


(3)

解:存在.

∵B,C不重合,

∴m≠1,分两种情况:

①当m>1时,m=2,相对应的E点坐标是(2,0)或(0,4);

②当0<m<1时,m= .,相对应的E点坐标是( ,0);

∴E点坐标是(2,0)或(0,4)或( ,0)


【解析】(1)把m= ,代入抛物线的解析式,令y=0解方程,得到的非0解即为和x轴交点的横坐标,再求出抛物线的对称轴方程,进而求出BC的长;(2)过点C作CH⊥x轴于点H(如图1)由已知得∠ACP=∠BCH=90°,利用已知条件证明△ACH∽△PCB,根据相似的性质得到: ,再用含有m的代数式表示出BC,CH,BP,代入比例式即可求出m的值;(3)存在,本题要分当m>1时,BC=2(m﹣1),PM=m,BP=m﹣1和当0<m<1时,BC=2(1﹣m),PM=m,BP=1﹣m,两种情况分别讨论,再求出满足题意的m值和相对应的点E坐标.
【考点精析】认真审题,首先需要了解相似三角形的应用(测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网