题目内容
【题目】如图,已知在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D,以AB上点O为圆心作⊙O,使⊙O经过点A和点D.
(1)判断直线BC与⊙O的位置关系,并说明理由;
(2)若AE=6,劣弧DE的长为π,求线段BD,BE与劣弧DE所围成的阴影部分的面积(结果保留根号和π).
【答案】(1)直线BC与⊙O相切,理由详见解析;(2).
【解析】
(1)连接OD,由角平分线的定义可得∠DAC=∠DAB,根据等腰三角形的性质可得∠OAD=∠ODA,即可证明OD//AC,根据平行线的性质可得,可得直线BC与⊙O相切;
(2)利用弧长公式可求出∠DOE=60°,根据∠DOE的正切可求出BD的长,利用三角形和扇形的面积公式即可得答案.
(1)直线与⊙O相切,理由如下:
连接,
∵是的平分线,
∴,
∵,
∴,
∴,
∴,
∴,
∴,
∴直线与⊙O相切.
(2)∵,劣弧的长为,
∴,
∴
∵,
∴,
∴.
∴BE与劣弧DE所围成的阴影部分的面积为.
【题目】某工厂设计了一款成本为20元/件的工艺品投放市场进行试销,经过调查,得到如下数据:
销售单价(元/件) | … | 30 | 40 | 50 | 60 | … |
每天销售量(件) | … | 500 | 400 | 300 | 200 | … |
(1)研究发现,每天销售量与单价满足一次函数关系,求出与的关系式;
(2)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润8000元?
【题目】省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 |
乙 | 10 | 10 | 10 | 9 | 8 |
(1)根据表格中的数据,可计算出甲的平均成绩是 环(直接写出结果);
(2)已知乙的平均成绩是9环,试计算其第二次测试成绩的环数;
(3)分别计算甲、乙六次测试成绩的方差,根据计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.
(计算方差的公式:)