题目内容

【题目】如下图。
(1)问题 如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:
(2)探究 如图,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.
(3)应用 请利用(1)(2)获得的经验解决问题
如图3,在△ABD中,AB=6,AD=BD=5,点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠CPD=∠A.设点P的运动时间为t(秒),当以D为圆心,DC为半径的圆与AB相切时,求t的值.

【答案】
(1)证明:如图1,

∵∠DPC=∠A=∠B=90°,

∴∠ADP+∠APD=90°,

∠BPC+∠APD=90°,

∴∠ADP=∠BPC,

∴△ADP∽△BPC,


(2)解:结论 仍然成立.

理由:如图2,

∵∠BPD=∠DPC+∠BPC,∠BPD=∠A+∠ADP,

∴∠DPC+∠BPC=∠A+∠ADP.

∵∠DPC=∠A=∠B=θ,

∴∠BPC=∠ADP,

∴△ADP∽△BPC,


(3)解:如图3,

过点D作DE⊥AB于点E.

∵AD=BD=5,AB=6,

∴AE=BE=3.

由勾股定理可得DE=4.

∵以点D为圆心,DC为半径的圆与AB相切,

∴DC=DE=4,

∴BC=5﹣4=1.

又∵AD=BD,

∴∠A=∠B,

∴∠DPC=∠A=∠B.

∵AD=BD,

∴∠A=∠B,

∵∠BPD=∠A+∠ADP=∠DPC+∠BPC,∠DPC=∠A,

∴∠ADP=∠BPC,

∴△APD∽△BCP,

∴ADBC=APBP;

∴5×1=t(6﹣t),

解得:t1=1,t2=5,

∴t的值为1秒或5秒


【解析】(1)如图1,由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(2)如图2,由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(3)如图3,过点D作DE⊥AB于点E,根据等腰三角形的性质可得AE=BE=3,根据勾股定理可得DE=4,由题可得DC=DE=4,则有BC=5﹣4=1.易证∠DPC=∠A=∠B.根据ADBC=APBP,就可求出t的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网