题目内容
【题目】如下图。
(1)问题 如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证: .
(2)探究 如图,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.
(3)应用 请利用(1)(2)获得的经验解决问题
如图3,在△ABD中,AB=6,AD=BD=5,点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠CPD=∠A.设点P的运动时间为t(秒),当以D为圆心,DC为半径的圆与AB相切时,求t的值.
【答案】
(1)证明:如图1,
∵∠DPC=∠A=∠B=90°,
∴∠ADP+∠APD=90°,
∠BPC+∠APD=90°,
∴∠ADP=∠BPC,
∴△ADP∽△BPC,
∴
(2)解:结论 仍然成立.
理由:如图2,
∵∠BPD=∠DPC+∠BPC,∠BPD=∠A+∠ADP,
∴∠DPC+∠BPC=∠A+∠ADP.
∵∠DPC=∠A=∠B=θ,
∴∠BPC=∠ADP,
∴△ADP∽△BPC,
∴
(3)解:如图3,
过点D作DE⊥AB于点E.
∵AD=BD=5,AB=6,
∴AE=BE=3.
由勾股定理可得DE=4.
∵以点D为圆心,DC为半径的圆与AB相切,
∴DC=DE=4,
∴BC=5﹣4=1.
又∵AD=BD,
∴∠A=∠B,
∴∠DPC=∠A=∠B.
∵AD=BD,
∴∠A=∠B,
∵∠BPD=∠A+∠ADP=∠DPC+∠BPC,∠DPC=∠A,
∴∠ADP=∠BPC,
∴△APD∽△BCP,
∴ ,
∴ADBC=APBP;
∴5×1=t(6﹣t),
解得:t1=1,t2=5,
∴t的值为1秒或5秒
【解析】(1)如图1,由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(2)如图2,由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(3)如图3,过点D作DE⊥AB于点E,根据等腰三角形的性质可得AE=BE=3,根据勾股定理可得DE=4,由题可得DC=DE=4,则有BC=5﹣4=1.易证∠DPC=∠A=∠B.根据ADBC=APBP,就可求出t的值.
【题目】科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:
温度t/℃ | ﹣4 | ﹣2 | 0 | 1 | 4 |
植物高度增长量l/mm | 41 | 49 | 49 | 46 | 25 |
科学家经过猜想、推测出l与t之间是二次函数关系.由此可以推测最适合这种植物生长的温度为℃.