题目内容
【题目】如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.
(1)画出△ABC的AB边上的中线CD;
(2)画出△ABC向右平移4个单位后得到的△A1B1C1;
(3)图中AC与A1C1的关系是: ;
(4)能使S △ABQ=S △ABC的格点Q,共有 个,在图中分别用Q 1,Q 2,…表示出来.
【答案】(1)见解析;(2)见解析:(3)平行且相等;(4)4个,图见解析.
【解析】
(1)根据中线的定义得出AB的中点即可得出△ABC的AB边上的中线CD;
(2)平移A,B,C各点,得出各对应点,连接得出△A1B1C1;
(3)利用平移的性质得出AC与A1C1的关系;
(4)首先求出S△ABC的面积,进而得出Q点的个数.
解:(1)如图所示:取AB的中点D,连接CD;CD就是△ABC的AB边上的中线;
(2)如图所示:将A,B,C各点向右平移四个单位,得出各对应点,然后顺次连接;
(3)根据平行的性质可得:AC与A1C1的关系为:平行且相等;
(4)如图所示,S △ABQ=S △ABC的格点Q,共有4个
【题目】某校举办了一次趣味数学竞赛,满分100分,学生得分均为整数,达到成绩60分及以上为合格,达到90分及以上为优秀,这次竞赛中,甲乙两组学生成绩如下,甲组:30,60,60,60,60,60,70,90,90,100 ;乙组:50,60,60,60,70,70,70,70,80,90.
(1)以上成绩统计分析表中a=______分,b=______分,c=_______分;
组别 | 平均数 | 中位数 | 方差 | 合格率 | 优秀率 |
甲组 | 68分 | a | 376 | 30% | |
乙组 | b | c | 90% |
(2)小亮同学说:这次竞赛我得了70分,在我们小组中属于中游略偏上,观察上面表格判断,小亮可能是甲乙哪个组的学生?并说明理由
(3)计算乙组的方差和优秀率,如果你是该校数学竞赛的教练员,现在需要你选一组同学代表学校参加复赛,你会选择哪一组?并说明理由