题目内容
【题目】如图,矩形ABCD中,,点E在AD上,且,连接EC,将矩形ABCD沿直线BE翻折,点A恰好落在EC上的点A'处,则____________cm.
【答案】8
【解析】
设A′C=xcm,先根据已知利用AAS证明△A′BC≌△DCE,得出A′C=DE= xcm,则BC=AD=(9+x)cm,A′B=AB=15cm,然后在Rt△A′BC中,由勾股定理可得BC2=A′B2+A′C2,即可得方程,解方程即可求得答案
解:∵四边形ABCD是矩形,
∴AB=CD=15cm,∠A=∠D=90°,AD∥BC,AD=BC,
∴∠DEC=∠A′CB,
由折叠的性质,得:A′B=AB=15cm,∠BA′E=∠A=90°,
∴A′B=CD,∠BA′C=∠D=90°,
在△A′BC和△DCE中,
∴△A′BC≌△DCE(AAS),
∴A′C=DE,
设A′C=xcm,则BC=AD=DE+AE=x+9(cm),
在Rt△A′BC中,BC2=A′B2+A′C2,
即(x+9)2=x2+152,
解得:x=8,
∴A′C=8cm.
故答案为:8.
练习册系列答案
相关题目
【题目】某商店需要购进甲、乙两种商品共180件,其进价和售价如表:(注:获利=售价-进价)
甲 | 乙 | |
进价(元/件) | 14 | 35 |
售价(元/件) | 20 | 43 |
(1)若商店计划销售完这批商品后能获利1240元,问甲、乙两种商品应分别购进多少件?
(2)若商店计划投入资金少于5040元,且销售完这批商品后获利多于1312元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.