题目内容
如图,圆锥的底面半径OA=2cm,高为PO=4
cm,现有一个蚂蚁从A出发引圆锥侧面爬到母线PB的中点,则它爬行的最短路程为( )

2 |
A.3
| B.6cm | C.4
| D.6
|

沿PA剪开展开后得出扇形PAA′,连接AA′交PB于N,连接AM,则AM的长为蚂蚁爬行的最短路程,
∵由勾股定理得:PA=PB=
AO2+PO2 |
22+(4
|
∴弧AB=
1 |
2 |
∴弧AB对的圆心角是
2π |
6 |
1 |
3 |
∴在Rt△PNA中,PN=PA•cos60°=3cm,AN=PA•sin60°=3
3 |
∵M为PB中点,
∴PM=BM=
1 |
2 |
1 |
2 |
即M和N重合,
∴AM=AN=3
3 |
故选A.


练习册系列答案
相关题目