题目内容
【题目】已知:如图,B,C,D三点在 上,,PA是钝角△ABC的高线,PA的延长线与线段CD交于点E.
(1)请在图中找出一个与∠CAP相等的角,这个角是 ;
(2)用等式表示线段AC,EC,ED之间的数量关系,并证明.
【答案】(1) ∠BAP;(2)AC,EC,ED满足的数量关系:EC2+ED2=2AC2. 证明见解析.
【解析】
(1)根据等腰三角形ABC三线合一解答即可;
(2)连接EB,由PA是△CAB的垂直平分线,得到EC=EB.,∠ECP=∠EBP,∠ECA=∠EBA. 然后推出∠BAD=∠BED=90°,利用勾股定理可得EB2+ED2=BD2,找到BD2=2AB2,代入可求的EC2+ED2=2AC2的等量关系即可.
(1)∵等腰三角形ABC 且PA是钝角△ABC的高线
∴PA是∠CAB的角平分线
∴∠CAP=∠BAP
(2)AC,EC,ED满足的数量关系:EC2+ED2=2AC2.
证明:连接EB,与AD交于点F
∵点B,C两点在⊙A上,
∴AC=AB,
∴∠ACP=∠ABP.
∵PA是钝角△ABC的高线,
∴PA是△CAB的垂直平分线.
∵PA的延长线与线段CD交于点E,
∴EC=EB.
∴∠ECP=∠EBP.
∴∠ECP—∠ACP =∠EBP —∠ABP.
即∠ECA=∠EBA.
∵AC=AD,
∴∠ECA=∠EDA
∴∠EBA=∠EDA
∵∠AFB=∠EFD, ∠BCD=45°,
∴∠AFB+∠EBA =∠EFD+∠EDA=90°
即∠BAD=∠BED=90°
∴EB2+ED2=BD2.
∵BD2=AB2+AD2,
∴ BD2=2AB2,
∴EB2+ED2=2AB2,
∴EC2+ED2=2AC2
【题目】北京市第十五届人大常委会第十六次会议表决通过《关于修改<北京市生活垃圾管理条例>的决定》,规定将生活垃圾分为厨余垃圾、可回收物、有害垃圾、其它垃圾四大基本品类,修改后的条例将于2020年5月1日实施 .某小区决定在2020年1月到3月期间在小区内设置四种垃圾分类厢:厨余垃圾、可回收物、有害垃圾、其它垃圾,分别记为A、B、C、D,进行垃圾分类试投放,以增强居民垃圾分类意识.
(1)小明家按要求将自家的生活垃圾分成了四类,小明从分好类的垃圾中随机拿了一袋,并随机投入一个垃圾箱中,请用画树状图的方法求垃圾投放正确的概率;
(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区四类垃圾箱中共1 000千克生活垃圾,数据统计如下(单位:千克):
A | B | C | D | |
厨余垃圾 | 400 | 100 | 40 | 60 |
可回收物 | 25 | 140 | 20 | 15 |
有害垃圾 | 5 | 20 | 60 | 15 |
其它垃圾 | 25 | 15 | 20 | 40 |
求“厨余垃圾”投放正确的概率.