题目内容
【题目】如图,在ABCD中,AE=CF.
(1)求证:△ADE≌△CBF;
(2)求证:四边形BFDE为平行四边形.
【答案】
(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,∠A=∠C,
在△ADE和△CBF中,
,
∴△ADE≌△CBF(SAS)
(2)证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∵AE=CF,
∴DF=EB,
∵DF∥EB,
∴四边形BFDE是平行四边形.
【解析】(1)首先依据平行四边形的性质可得到AD=BC,∠A=∠C,然后再根据SAS证明即可;
(2)依据平行四边形的性质得到DC∥AB,DC=AB,然后再依据等式的性质可得到DF=BE,最后,再依据一组对边平行且相等的四边形为平行四边形进行证明即可.
【考点精析】关于本题考查的平行四边形的判定与性质,需要了解若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积才能得出正确答案.
练习册系列答案
相关题目