题目内容

【题目】如图,在平面直角坐标系中,二次函数y=﹣ x2+bx+c的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(﹣4,0).

(1)求该二次函数的表达式及点C的坐标;
(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S.
①求S的最大值;
②在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值.

【答案】
(1)

解:把A(0,8),B(﹣4,0)代入y=﹣ x2+bx+c得 ,解得

所以抛物线的解析式为y=﹣ x2+x+8;

当y=0时,﹣ x2+x+8=0,解得x1=﹣4,x2=8,

所以C点坐标为(8,0)


(2)

解:①连结OF,如图,

设F(t,﹣ t2+t+8),

∵S四边形OCFD=SCDF+SOCD=SODF+SOCF

∴SCDF=SODF+SOCF﹣SOCD= 4t+ 8(﹣ t2+t+8)﹣ 48

=﹣t2+6t+16

=﹣(t﹣3)2+25,

当t=3时,△CDF的面积有最大值,最大值为25,

∵四边形CDEF为平行四边形,

∴S的最大值为50;

②∵四边形CDEF为平行四边形,

∴CD∥EF,CD=EF,

∵点C向左平移8个单位,再向上平移4个单位得到点D,

∴点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,﹣ t2+t+12),

∵E(t﹣8,﹣ t2+t+12)在抛物线上,

∴﹣ (t﹣8)2+t﹣8+8=﹣ t2+t+12,解得t=7,

当t=7时,SCDF=﹣(7﹣3)2+25=9,

∴此时S=2SCDF=18.


【解析】(1)把A点和B点坐标代入y=﹣ x2+bx+c得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线的解析式;然后计算函数值为0时对应的自变量的值即可得到C点坐标(2)①连结OF,如图,设F(t,﹣ t2+t+8),利用S四边形OCFD=SCDF+SOCD=SODF+SOCF , 利用三角形面积公式得到SCDF=﹣t2+6t+16,再利用二次函数的性质得到△CDF的面积有最大值,然后根据平行四边形的性质可得S的最大值; ②由于四边形CDEF为平行四边形,则CD∥EF,CD=EF,利用C点和D的坐标特征可判断点C向左平移8个单位,再向上平移4个单位得到点D,则点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,﹣ t2+t+12),然后把E(t﹣8,﹣ t2+t+12)代入抛线解析式得到关于t的方程,再解方程求出t后计算△CDF的面积,从而得到S的值.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和平行四边形的性质;会利用待定系数法求二次函数解析式;理解坐标与图形性质,掌握点平移的坐标规律.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网