题目内容

【题目】如图,在ABCD中,已知AD>AB.

(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)
(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.

【答案】
(1)

解:如图所示


(2)

四边形ABEF是菱形;理由如下:

∵四边形ABCD是平行四边形,

∴AD∥BC,

∴∠DAE=∠AEB,

∵AE平分∠BAD,

∴∠BAE=∠DAE,

∴∠BAE=∠AEB,

∴BE=AB,

由(1)得:AF=AB,

∴BE=AF,

又∵BE∥AF,

∴四边形ABEF是平行四边形,

∵AF=AB,

∴四边形ABEF是菱形.


【解析】(1)由角平分线的作法容易得出结果,在AD上截取AF=AB,连接EF;画出图形即可;(2)由平行四边形的性质和角平分线得出∠BAE=∠AEB,证出BE=AB,由(1)得:AF=AB,得出BE=AF,即可得出结论.本题考查了平行四边形的性质、作图﹣基本作图、等腰三角形的判定、菱形的判定;熟练掌握平行四边形的性质和角平分线作图,证明BE=AB是解决问题(2)的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网