题目内容

【题目】如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0, ),点A坐标为(﹣1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.

(1)求该抛物线的函数关系表达式.
(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.
(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.

【答案】
(1)

解:∵点B是点A关于y轴的对称点,

∴抛物线的对称轴为y轴,

∴抛物线的顶点为(0, ),

故抛物线的解析式可设为y=ax2+

∵A(﹣1,2)在抛物线y=ax2+ 上,

∴a+ =2,

解得a=﹣

∴抛物线的函数关系表达式为y=﹣ x2+


(2)

解:①当点F在第一象限时,如图1,

令y=0得,﹣ x2+ =0,

解得:x1=3,x2=﹣3,

∴点C的坐标为(3,0).

设直线AC的解析式为y=mx+n,

则有

解得

∴直线AC的解析式为y=﹣ x+

设正方形OEFG的边长为p,则F(p,p).

∵点F(p,p)在直线y=﹣ x+ 上,

∴﹣ p+ =p,

解得p=1,

∴点F的坐标为(1,1).

②当点F在第二象限时,

同理可得:点F的坐标为(﹣3,3),

此时点F不在线段AC上,故舍去.

综上所述:点F的坐标为(1,1)


(3)

解:过点M作MH⊥DN于H,如图2,

则OD=t,OE=t+1.

∵点E和点C重合时停止运动,∴0≤t≤2.

当x=t时,y=﹣ t+ ,则N(t,﹣ t+ ),DN=﹣ t+

当x=t+1时,y=﹣ (t+1)+ =﹣ t+1,则M(t+1,﹣ t+1),ME=﹣ t+1.

在Rt△DEM中,DM2=12+(﹣ t+1)2= t2﹣t+2.

在Rt△NHM中,MH=1,NH=(﹣ t+ )﹣(﹣ t+1)=

∴MN2=12+( 2=

①当DN=DM时,

(﹣ t+ 2= t2﹣t+2,

解得t=

②当ND=NM时,

t+ = =

解得t=3﹣

③当MN=MD时,

= t2﹣t+2,

解得t1=1,t2=3.

∵0≤t≤2,∴t=1.

综上所述:当△DMN是等腰三角形时,t的值为 ,3﹣ 或1.


【解析】(1)易得抛物线的顶点为(0, ),然后只需运用待定系数法,就可求出抛物线的函数关系表达式;(2)①当点F在第一象限时,如图1,可求出点C的坐标,直线AC的解析式,设正方形OEFG的边长为p,则F(p,p),代入直线AC的解析式,就可求出点F的坐标;②当点F在第二象限时,同理可求出点F的坐标,此时点F不在线段AC上,故舍去;(3)过点M作MH⊥DN于H,如图2,由题可得0≤t≤2.然后只需用t的式子表示DN、DM2、MN2 , 分三种情况(①DN=DM,②ND=NM,③MN=MD)讨论就可解决问题.本题主要考查了运用待定系数法求抛物线及直线的解析式、直线及抛物线上点的坐标特征、抛物线的性质、解一元二次方程、勾股定理等知识,运用分类讨论的思想是解决第(2)、(3)小题的关键,在解决问题的过程中要验证是否符合题意.
【考点精析】认真审题,首先需要了解确定一次函数的表达式(确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法),还要掌握抛物线与坐标轴的交点(一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网