题目内容

【题目】定义一种对正整数n“F运算:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为(其中k是使为奇数的正整数);并且运算重复进行.例如,取n=26,第3“F运算的结果是11.则:若n=449,则第449“F运算的结果是____

【答案】8

【解析】

解决此类问题的关键在于将新运算转化为学过的数的有关运算法则进行计算,从而求出答案.

本题提供的F运算,需要对正整数n分情况(奇数、偶数)循环计算,由于n=449为奇数应先进行F①运算,3×449+5=1352 (偶数),需再进行F②运算,1352÷23=169 (奇数),再进行F①运算,得到3×169+5=512 (偶数),再进行F②运算,512÷29=1 (奇数),再进行F①运算,得到3×1+5=8 (偶数),再进行F)运算,8÷23=1,再进行F①运算得到3×1+5= 8(偶数),.,即第1次运算结果为1352,...4次运算结果为1,5次运算结果为8,…可以发现第6次运算结果为1,7次运算结果为8,从第6次运算结果开始循环,且奇数次运算的结果为8,偶数次为1,而第499次是奇数,这样循环计算一直到第449F运算”,得到的结果为8,故本题答案为:8.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网