题目内容
【题目】如图,点E是正方形ABCD的对角线BD上一点,并且AD=DE,过点E作EF⊥BD交AB于点F.
(1)求证:AF=BE,(2)若正方形的边长为1,求BF的长度.
【答案】(1)见解析;(2)2-.
【解析】
(1)先证Rt△AFD≌Rt△EFD,则EF=AF,再由正方形的性质得出∠EBF=45°,可得△BFE是等腰直角三角形,则BE=EF,即可得出结论;
(2)根据勾股定理求出BD=,由AD=DE可得BE= -1,由AF=BE,AB=1即可得BF的长度.
证明:(1)如图,连接DF,
∵正方形ABCD,
∴AB=DC=BC=AD
∴∠A=∠ ABC=∠ C=∠ ADC=90°
∵EF⊥BD
∴∠DEF=∠ BEF=90°
∴∠A=∠ DEF
在Rt△AFD与Rt△EFD中
∵AD=ED,DF=DF
∴Rt△AFD≌Rt△EFD(HL)
∴EF=AF
∵四边形ABCD是正方形
∴∠EBF=45°
∴∠BFE=90°-∠EBF=45°
∴∠EBF=∠ EFB
∴BE=EF
∴AF=BE.
(2)由(1)知,AF=EF=BE,AB=DC=BC=AD=1,
∴BD= = ,
∵AD=DE
∴BE=BD-DE=-1,
∴AF=BE=-1,
∴BF=AB-AF=1-(-1)=2-.
练习册系列答案
相关题目
【题目】九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:
售价(元/件) | 100 | 110 | 120 | 130 | …… |
月销量(件) | 200 | 180 | 160 | 140 | …… |
(1)已知该运动服的进价为每件60元,设售价为x元;
请用含有x的式子表示:
①销售该运动服每件的利润是 元;
②月销售量是 件;(直接写结果)
(2)设销售该运动服的月利润为y元,那么售价为多少元时,当月的利润最大?最大利润是多少?