题目内容
【题目】自我省深化课程改革以来,某校开设了:A.利用影长求物体高度,B.制作视力表,C.设计遮阳棚,D.制作中心对称图形,四类数学实践活动课.规定每名学生必选且只能选修一类实践活动课,学校对学生选修实践活动课的情况进行抽样调查,将调查结果绘制成如下两幅不完整的统计图.
根据图中信息解决下列问题:
(1)本次共调查名学生,扇形统计图中B所对应的扇形的圆心角为度;
(2)补全条形统计图;
(3)选修D类数学实践活动的学生中有2名女生和2名男生表现出色,现从4人中随机抽取2人做校报设计,请用列表或画树状图法求所抽取的两人恰好是1名女生和1名男生的概率.
【答案】(1)60 , 144(2)见解析(3)
【解析】
(1)用C类别人数除以其所占百分比可得总人数,用360°乘以C类别人数占总人数的比例即可得;
(2)总人数乘以A类别的百分比求得其人数,用总人数减去A,B,C的人数求得D类别的人数,据此补全图形即可;
(3)画树状图展示12种等可能的结果数,再找出所抽取的两人恰好是1名女生和1名男生的结果数,然后根据概率公式求解.
(1)本次调查的学生人数为12÷20%=60(名),
则扇形统计图中B所对应的扇形的圆心角为360°×=144°.
故答案为:60 , 144
(2)A类别人数为60×15%=9(人),
则D类别人数为60﹣(9+24+12)=15(人),
补全条形图如下:
(3)画树状图为:
共有12种等可能的结果数,其中所抽取的两人恰好是1名女生和1名男生的结果数为8,所以所抽取的两人恰好是1名女生和1名男生的概率为=.
练习册系列答案
相关题目