题目内容
【题目】如图,矩形ABCD中,折叠矩形一边AD,使点D落在BC边的点F处,已知折痕AE=,且CE:CF=3:4,则矩形ABCD的周长为()
A. 36cm B. 3 C. 72cm D. 7
【答案】C
【解析】
由CE:CF=3:4.在Rt△EFC中可设CF=4k,EF=DE=5k,根据∠BAF=∠EFC,利用相似三角形的性质求出AF,然后在Rt△AEF中利用勾股定理求出k,继而代入可得出答案.
设CE=3k,则CF=4k,由勾股定理得:EF=DE=5k,∴DC=AB=8k.
∵∠AFB+∠BAF=90°,∠AFB+∠EFC=90°,∴∠BAF=∠EFC.
∵∠B=∠C=90°,∴△ABF∽△FCE,∴AB:BF=FC:CE=4:3,∴BF=6k,AF=BC=AD=10k.在Rt△AFE中由勾股定理得:,解得:k=2,则矩形ABCD的周长=2(AB+BC)=2(8k+10k)=72(cm).
故选C.
练习册系列答案
相关题目