题目内容

已知点A(-1,0),点B(与A不重合)在射线AO上,点C在x轴上方,且△ABC为等边三角形,射线AC交y轴于D.
(1)当AB=4时,则点B、C、D的坐标分别是:B:
(3,0)
(3,0)
,C:
(1,2
3
(1,2
3
,D:
(0,
3
(0,
3

(2)若AB=m(m>0),则点B、C的坐标分别是:B:
(m-1,0)
(m-1,0)
,C:
1
2
m-1,
3
2
m)
1
2
m-1,
3
2
m)

当C、D不重合时,请根据m的不同取值,对于过B、C、D三点的二次函数开口方向作出判断,直接写出结论(不要求证明).
(3)是否存在点B,使S△BCD=
3
3
16
?若存在,求出点B的坐标;若不存在,请说明理由.
分析:(1)由点A(-1,0)及AB=4,易得出B点坐标为(3,0);过点C作CE⊥x轴于点E,根据等边三角形的性质求出,AE=
1
2
AB=2,CE=
3
AE=2
3
,则OE=1,得到C点坐标为(1,2
3
);解Rt△AOD,得出OD=OA•tan60°=
3
,进而得到D点坐标为(0,
3
);
(2)先由AB=m,点A(-1,0),得出B(m-1,0);过点C作CE⊥x轴于点E,根据等边三角形的性质得出,AE=
1
2
AB=
1
2
m,CE=
3
AE=
3
2
m,由两点间的距离公式求出点E(
1
2
m-1,0),则C点坐标为(
1
2
m-1,
3
2
m);先由已知条件得出m≠1且m≠2,再分两种情况进行讨论:①0<m<1,②m>1(m≠2),根据B、C、D三点的位置及抛物线的形状特征,即可得到过B、C、D三点的二次函数的开口方向;
(3)设AB=m,分两种情况进行讨论:
①当m>2时,如备用图1,先根据三角形的面积公式得出S△BCD=S△ABC-SABD=
3
4
m2-
3
2
m,再列出方程
3
4
m2-
3
2
m=
3
3
16
,解方程即可求出点B1的坐标;
②当0<m<2时,如备用图2,先根据三角形的面积公式得出S△BCD=S△ABD-SABC=-
3
4
m2+
3
2
m,再解方程-
3
4
m2+
3
2
m=
3
3
16
,解方程即可.
解答:解:(1)∵点A(-1,0),点B(与A不重合)在射线AO上,AB=4,
∴B点坐标为(3,0);
过点C作CE⊥x轴于点E,
∵△ABC为等边三角形,
∴AE=
1
2
AB=2,CE=
3
AE=2
3

∴OE=AE-OA=2-1=1,
∴C点坐标为(1,2
3
);
在△AOD中,∵∠AOD=90°,∠OAD=60°,OA=1,
∴OD=OA•tan60°=
3

∴D点坐标为(0,
3
);

(2)∵AB=m,点A(-1,0),
∴B(m-1,0);
过点C作CE⊥x轴于点E,
∵△ABC为等边三角形,
∴AE=
1
2
AB=
1
2
m,CE=
3
AE=
3
2
m,
∵点A(-1,0),
∴点E(
1
2
m-1,0),
C点坐标为(
1
2
m-1,
3
2
m).
∵C、D不重合,
∴m≠2,
又m=1时,B与O重合,过B、C、D三点的二次函数不存在,
∴m≠1且m≠2.
当0<m<1时,B点在x轴负半轴上,过B、C、D三点的抛物线开口向上;
当m>1(m≠2)时,B点在x轴正半轴上,过B、C、D三点的抛物线开口向下;

(3)存在点B,使S△BCD=
3
3
16
.理由如下:
设AB=m,分两种情况:
①当m>2时,如备用图1.
S△BCD=S△ABC-SABD=
3
4
m2-
1
2
m•
3
=
3
4
m2-
3
2
m,
3
4
m2-
3
2
m=
3
3
16

解得m1=
2+
7
2
,m2=
2-
7
2
(不满足m>2,舍去),
所以有m=
2+
7
2
,-1+
2+
7
2
=
7
2

这时点B1的坐标为(
7
2
,0
);
②当0<m<2时,如备用图2,S△BCD=S△ABD-SABC=
1
2
m•
3
-
3
4
m2=-
3
4
m2+
3
2
m,
由-
3
4
m2+
3
2
m=
3
3
16

解得m1=
1
2
,m2=
3
2

-1+
1
2
=-
1
2
,-1+
3
2
=
1
2

这时点B2的坐标为(-
1
2
,0
),点B3的坐标为(
1
2
,0
).
综上所述,当点B的坐标为(
7
2
,0
),(-
1
2
,0
)和(
1
2
,0
)时,有S△BCD=
3
3
16

故答案为(3,0),(1,2
3
),(0,
3
);(m-1,0),(
1
2
m-1,
3
2
m).
点评:本题考查了等边三角形的性质,解直角三角形,二次函数的性质,两点间的距离公式,三角形的面积,解一元二次方程等知识,综合性较强,难度适中,运用数形结合及分类讨论思想是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网