题目内容

【题目】如图,方格纸中每个小正方形的边长都是单位1,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:

(1)将△ABC向右平移3个单位长度再向下平移2个单位长度,画出两次平移后的△A1B1C1

(2)写出A1、C1的坐标;

(3)将△A1B1C1绕C1逆时针旋转90°,画出旋转后的△A2B2C1,求线段B1C1旋转过程中扫过的面积(结果保留π).

【答案】(1)作图见解析;(2)A1(0,2);C1(2,0);(3)

【解析】

试题分析:(1)根据图形平移的性质画出两次平移后的△A1B1C1即可;

(2)根据△A1B1C1在坐标系中的位置写出A1、C1的坐标;

(3)根据图形旋转的性质画出旋转后的△A2B2C1,再根据勾股定理求出B1C1的长,由扇形的面积公式即可计算出线段B1C1旋转过程中扫过的面积.

试题解析:(1)如图所示:

(2)由△A1B1C1在坐标系中的位置可知,A1(0,2);C1(2,0);

(3)旋转后的图形如图所示:

∵由勾股定理可知,B1C1=

∴S扇形=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网