题目内容
【题目】已知:如图,⊙O与⊙P相交于A、B两点,点P在⊙O上,⊙O的弦AC切⊙P于点A,CP及其延长线交⊙P于D、E,过点E作EF⊥CE交CB的延长线于F.
(1)求证:BC是⊙P的切线;
(2)若CD=2,CB=2,求EF的长.
【答案】(1)见解析(2)
【解析】
(1)连接PA,PB,根据圆内接四边形对角互补证明∠PBC是直角,从而可以确定CB是⊙P的切线;
(2)根据△FCE∽△PCB,则,由于CB是⊙P的切线,所以根据CB2=CD(CD+DE),可以求得DE的长度,进而求得CE的长度;再求得BP的长度即可,在Rt△CPB中,CP=3,CB=2,则可求得EF的长度.
(1)连接PB,PA,
∵点P在⊙O上,
∵⊙O的弦AC切⊙P于点A,
∴∠CAP=90°,
∵四边形APBC是⊙O的内接四边形,
∴∠PBC=90°,即PB⊥CB.
∵B在⊙P上,
∴CB是⊙P的切线.
(2)∵CB是⊙P的切线,
∴CB2=CD(CD+DE).
∵CD=2,CB=,
∴(2)2═2×(2+ED).
∴DE=2.
∴CE=CD+DE=2+2=4.
∴在⊙P中,PD=PE=ED=1,
∵CP=3,CB=2,
∴BP=1.
∵EF⊥CE,
∴∠FEC=∠CBP=90°,∠FCE=∠PCB.
∴△FCE∽△PCB.
∴,
∵CB=2,CE=4,BP=1,
∴,
∴EF=.
练习册系列答案
相关题目