题目内容

【题目】已知:如图,⊙O与⊙P相交于A、B两点,点P在⊙O上,⊙O的弦AC切⊙P于点A,CP及其延长线交⊙P于D、E,过点E作EF⊥CE交CB的延长线于F.

(1)求证:BC是⊙P的切线;

(2)若CD=2,CB=2,求EF的长.

【答案】(1)见解析(2)

【解析】

(1)连接PA,PB,根据圆内接四边形对角互补证明∠PBC是直角,从而可以确定CB是⊙P的切线;
(2)根据△FCE∽△PCB,则,由于CB是⊙P的切线,所以根据CB2=CD(CD+DE),可以求得DE的长度,进而求得CE的长度;再求得BP的长度即可,在Rt△CPB中,CP=3,CB=2,则可求得EF的长度.

(1)连接PB,PA,

∵点P在⊙O上,

∵⊙O的弦AC切⊙P于点A,

∴∠CAP=90°,

∵四边形APBC是⊙O的内接四边形,

∴∠PBC=90°,即PB⊥CB.

∵B在⊙P上,

∴CB是⊙P的切线.

(2)∵CB是⊙P的切线,

∴CB2=CD(CD+DE).

∵CD=2,CB=

∴(2)2═2×(2+ED).

∴DE=2.

∴CE=CD+DE=2+2=4.

∴在⊙P中,PD=PE=ED=1,

∵CP=3,CB=2

∴BP=1.

∵EF⊥CE,

∴∠FEC=∠CBP=90°,∠FCE=∠PCB.

∴△FCE∽△PCB.

∵CB=2,CE=4,BP=1,

∴EF=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网