题目内容
【题目】如图,平行四边形ABCD的对角线AC,BD相交于点O,E、F分别是OA,OC的中点.
(1)求证:BE=DF;
(2)在不添加任何辅助线的情况下写出图中的所有全等三角形.
【答案】(1)见解析;(2)△AOD≌△COB,△AOB≌△COD,△ABC≌△CDA,△ABD≌△CDB,△ABE≌△CDF,△BOE≌△DOF,见解析
【解析】
(1)由平行四边形的性质得出AB=CD,OA=OC,OB=OD,AB∥CD,证出∠BAE=∠DCF,AE=CF,由SAS证明△ABE≌△CDF,即可得出结论;
(2)由平行四边形的性质得出AB=CD,AD=CB,OA=OC,OB=OD,由SAS证明△AOD≌△COB,同理:△AOB≌△COB;由SSS证明△ABC≌△CDA,同理:△ABD≌△CDB;由(1)得:△ABE≌△FD;由SAS证明△BOE≌△DOF即可.
(1)证明:∵四边形ABCD是平行四边形
∴AB=CD,OA=OC,OB=OD,AB∥CD,
∴∠BAE=∠DCF,
∵E、F分别是OA、OC的中点,
∴AE=OE=OA,CF=OF=OC,
∴AE=CF,
在△ABE和△CDF中,,
∴△ABE≌△CDF(SAS),
∴BE=DF;
(2)解:图中的所有全等三角形为△AOD≌△COB,△AOB≌△COD,△ABC≌△CDA,△ABD≌△CDB,△ABE≌△CDF,△BOE≌△DOF,理由如下:
∵四边形ABCD是平行四边形,
∴AB=CD,AD=CB,OA=OC,OB=OD,
在△AOD和△COB中,,
∴△AOD≌△COB(SAS),
同理:△AOB≌△COB;
在△ABC和△CDA中,,
∴△ABC≌△CDA(SSS),
同理:△ABD≌△CDB;
由(1)得:△ABE≌△FD;
在△BOE和△DOF中,,
∴△BOE≌△DOF(SAS).
【题目】“立定跳远”是我市初中毕业生体育测试项目之一.测试时,记录下学生立定跳远的成绩,然后按照评分标准转化为相应的分数,满分10分.其中男生立定跳远的评分标准如下:注:成绩栏里的每个范围,含最低值,不含最高值.
成绩(米) | … | 1.80~1.86 | 1.86~1.94 | 1.94~2.02 | 2.02~2.18 | 2.18~2.34 | 2.34~ |
得分(分) | … | 5 | 6 | 7 | 8 | 9 | 10 |
某校九年级有480名男生参加立定跳远测试,现从中随机抽取10名男生测试成绩(单位:分)如下:
1.96 2.38 2.56 2.04 2.34 2.17 2.60 2.26 1.87 2.32
请完成下列问题:
(1)求这10名男生立定跳远成绩的极差和平均数;
(2)求这10名男生立定跳远得分的中位数和众数;
(3)如果将9分(含9分)以上定为“优秀”,请你估计这480名男生中得优秀的人数.
【题目】某电器商场销售进价分别为120元、190元的两种型号的电风扇,如下表所示是近二周的销售情况(进价、售价均保持不变,利润销售收入进货成本):
销售时段 | 销售数量 | 销售收入 | |
种型号 | 种型号 | ||
第一周 | 5 | 6 | 2310 |
第二周 | 8 | 9 | 3540 |
(1)求两种型号的电风扇的销售单价;
(2)若商场再购进这两种型号的电风扇共120台,并且全部销售完,该商场能否实现这两批电风扇的总利润为8240元的目标?若能,请给出相应的采购方案;若不能,请说明理由.