题目内容
【题目】某商场经营某种品牌的玩具,购进的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具,
(1)设该种品牌玩具的销售单价为x元,请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元;
(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元?
(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于45元,且商场要完成不少于480件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
【答案】
(1)解:y=600﹣10(x﹣40)=﹣10x+1000,
w=(﹣10x+1000)(x﹣30)=﹣10x2+1300x﹣30000
(2)解:根据题意,得:﹣10x2+1300x﹣30000=10000,
解得:x1=50,x2=80,
答:玩具销售单价为50元或80元时,可获得10000元销售利润
(3)解:根据题意得 ,
解得:45≤x≤52,
w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250,
∵a=﹣10<0,对称轴x=65,
∴当45≤x≤52时,y随x增大而增大.
∴当x=52时,W最大值=10560(元),
答:商场销售该品牌玩具获得的最大利润是10560元
【解析】(1)根据销售量与销售单价之间的变化关系就可以直接求出y与x之间的关系式;根据销售问题的利润=售价﹣进价就可以表示出w与x之间的关系;(2)根据题意得方程求得x1=50,x2=80,于是得到结论;(3)根据销售单价不低于45元且商场要完成不少于480件的销售任务求得45≤x≤52,根据二次函数的性质得到当45≤x≤52时,y随x增大而增大,于是得到结论.
练习册系列答案
相关题目