题目内容
【题目】如图1,抛物线l1:y=﹣x2+bx+3交x轴于点A、B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣5).
(1)求抛物线l2的函数表达式;
(2)P为直线x=1上一动点,连接PA、PC,当PA=PC时,求点P的坐标;
(3)M为抛物线l2上一动点,过点M作直线MN∥y轴(如图2所示),交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.
【答案】(1)抛物线l2的函数表达式;y=x2﹣4x﹣5;(2)P点坐标为(1,1);(3)在点M自点A运动至点E的过程中,线段MN长度的最大值为12.5.
【解析】
(1)由抛物线l1的对称轴求出b的值,即可得出抛物线l1的解析式,从而得出点A、点B的坐标,由点B、点E、点D的坐标求出抛物线l2的解析式即可;(2)作CH⊥PG交直线PG于点H,设点P的坐标为(1,y),求出点C的坐标,进而得出CH=1,PH=|3﹣y |,PG=|y |,AG=2,由PA=PC可得PA2=PC2,由勾股定理分别将PA2、PC2用CH、PH、PG、AG表示,列方程求出y的值即可;(3)设出点M的坐标,求出两个抛物线交点的横坐标分别为﹣1,4,①当﹣1<x≤4时,点M位于点N的下方,表示出MN的长度为关于x的二次函数,在x的范围内求二次函数的最值;②当4<x≤5时,点M位于点N的上方,同理求出此时MN的最大值,取二者较大值,即可得出MN的最大值.
(1)∵抛物线l1:y=﹣x2+bx+3对称轴为x=1,
∴x=﹣=1,b=2,
∴抛物线l1的函数表达式为:y=﹣x2+2x+3,
当y=0时,﹣x2+2x+3=0,
解得:x1=3,x2=﹣1,
∴A(﹣1,0),B(3,0),
设抛物线l2的函数表达式;y=a(x﹣5)(x+1),
把D(0,﹣5)代入得:﹣5a=﹣5,a=1,
∴抛物线l2的函数表达式;y=x2﹣4x﹣5;
(2)作CH⊥PG交直线PG于点H,
设P点坐标为(1,y),由(1)可得C点坐标为(0,3),
∴CH=1,PH=|3﹣y |,PG=|y |,AG=2,
∴PC2=12+(3﹣y)2=y2﹣6y+10,PA2= =y2+4,
∵PC=PA,
∴PA2=PC2,
∴y2﹣6y+10=y2+4,解得y=1,
∴P点坐标为(1,1);
(3)由题意可设M(x,x2﹣4x﹣5),
∵MN∥y轴,
∴N(x,﹣x2+2x+3),
令﹣x2+2x+3=x2﹣4x﹣5,可解得x=﹣1或x=4,
①当﹣1<x≤4时,MN=(﹣x2+2x+3)﹣(x2﹣4x﹣5)=﹣2x2+6x+8=﹣2(x﹣)2+,
显然﹣1<≤4,
∴当x=时,MN有最大值12.5;
②当4<x≤5时,MN=(x2﹣4x﹣5)﹣(﹣x2+2x+3)=2x2﹣6x﹣8=2(x﹣)2﹣,
显然当x>时,MN随x的增大而增大,
∴当x=5时,MN有最大值,MN=2(5﹣)2﹣=12.
综上可知:在点M自点A运动至点E的过程中,线段MN长度的最大值为12.5.
【题目】甲、乙、丙三位运动员在相同条件下各射靶次,每次射靶的成绩如下:
甲:,,,,,,,,,
乙:,,,,,,,,,
丙:,,,,,,,,,
(1)根据以上数据完成下表:
平均数 | 中位数 | 方差 | |
甲 | __________ | ||
乙 | __________ | ||
丙 | __________ |
(2)根据表中数据分析,哪位运动员的成绩最稳定.并简要说明理由.
【题目】某学校八年级共有三个班,都参加了学校举行的书法绘画大赛,三个班根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分100分)如下表所示:
决赛成绩(单位:分) | |
八年1班 | 80 86 88 80 88 99 80 74 91 89 |
八年2班 | 85 85 87 97 85 76 88 77 87 88 |
八年3班 | 82 80 78 78 81 96 97 87 92 84 |
解答下列问题:
(1)请填写下表:
平均数(分) | 众数(分) | 中位数(分) | |
八年1班 | 85.5 |
| 87 |
八年2班 | 85.5 | 85 |
|
八年3班 |
| 78 | 83 |
(2)请从以下两个不同的角度对三个班级的决赛成绩进行
①从平均数和众数相结合看(分析哪个班级成绩好些).
②从平均数和中位数相结合看(分析哪个班级成绩好些).
(3)如果在每个班级参加决赛的选手中分别选出3人参加总决赛,你认为哪个班级的实力更强一些?请简要说明理由.