题目内容

【题目】如图所示,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于点E,CE=1,延长CE、BA交于点F.
(1)求证:△ADB≌△AFC;
(2)求BD的长度.

【答案】
(1)证明:如图,

∵∠BAC=90°,

∴∠2+∠F=90°,∠ACF+∠F=90°,

∴∠ACF=∠2,

在△ABF和△ACD中,

∴△ACF≌△ABD


(2)解:∵△ACF≌△ABD,

∴BD=CF,

∵BE⊥CF,

∴∠BEC=∠BEF=90°,

∵∠1+∠BCE=90°,∠2+∠F=90°,

∴∠BCF=∠F,

∴BC=BF,CE=EF=1,

∴BD=CF=2


【解析】(1)欲证明△ADB≌△AFC,只要证明∠ACF=∠2即可.(2)由(1)可知BD=CF,只要证明BC=BF,可得EC=EF=1,即可解决问题.
【考点精析】解答此题的关键在于理解等腰直角三角形的相关知识,掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网