题目内容
如图已知点M是△ABC边BC上一点,设
=
,
=
(1)当
=2时,
= ;(用
与
表示)
(2)当
=m(m>0)时,
= ;(用
、
与m表示)
(3)当
=
+
时,
= .
AB |
a |
AC |
b |
BM |
MC |
AM |
a |
b |
(2)当
BM |
MC |
AM |
a |
b |
(3)当
AM |
4 |
7 |
a |
3 |
7 |
b |
BM |
MC |
考点:*平面向量
专题:
分析:(1)由
=
,
=
,根据三角形法则即可求得
,又由
=2,即可求得
的值,继而求得答案;
(2)由
=
,
=
,根据三角形法则即可求得
,又由
=m,即可求得
的值,继而求得答案;
(3)根据(2)的结论,可得
=
,继而求得m的值.
AB |
a |
AC |
b |
BC |
BM |
MC |
BM |
(2)由
AB |
a |
AC |
b |
BC |
BM |
MC |
BM |
(3)根据(2)的结论,可得
1 |
m+1 |
4 |
7 |
解答:解:(1)∵
=
,
=
,
∴
=
-
=
-
,
∵
=2,
∴
=
=
(
-
)=
-
,
∴
=
+
=
+(
-
)=
+
;
(2)∵
=
,
=
,
∴
=
-
=
-
,
∵
=m,
∴
=
=
(
-
)=
-
,
∴
=
+
=
+(
-
)=
+
;
(3)∵
=
+
,
∴
=
,
解得:m=
,
∴
=
.
故答案为:(1)
+
;(2)
+
;(3)
.
AB |
a |
AC |
b |
∴
BC |
AC |
AB |
b |
a |
∵
BM |
MC |
∴
BM |
2 |
3 |
BC |
2 |
3 |
b |
a |
2 |
3 |
b |
2 |
3 |
a |
∴
AM |
AB |
BM |
a |
2 |
3 |
b |
2 |
3 |
a |
1 |
3 |
a |
2 |
3 |
b |
(2)∵
AB |
a |
AC |
b |
∴
BC |
AC |
AB |
b |
a |
∵
BM |
MC |
∴
BM |
m |
m+1 |
BC |
m |
m+1 |
b |
a |
m |
m+1 |
b |
m |
m+1 |
a |
∴
AM |
AB |
BM |
a |
m |
m+1 |
b |
m |
m+1 |
a |
1 |
m+1 |
a |
m |
m+1 |
b |
(3)∵
AM |
4 |
7 |
a |
3 |
7 |
b |
∴
1 |
m+1 |
4 |
7 |
解得:m=
3 |
4 |
∴
BM |
MC |
3 |
4 |
故答案为:(1)
1 |
3 |
a |
2 |
3 |
b |
1 |
m+1 |
a |
m |
m+1 |
b |
3 |
4 |
点评:此题考查了平面向量的知识.此题难度适中,注意掌握三角形法则的应用,注意掌握数形结合思想的应用.
练习册系列答案
相关题目