题目内容

【题目】如图,在平面直角坐标系中,直线分别与轴、轴交于点,且与直线交于.

1)求出点的坐标

2)当时,直接写出x的取值范围.

3)点x轴上,当的周长最短时,求此时点D的坐标

4)在平面内是否存在点,使以为顶点的四边形是平行四边形?若存在,直接写出点的坐标;若不存在,请说明理由.

【答案】1)(63);(2;(3)(00);(4)(69)或(6-3)或(-63.

【解析】

1)直接联立两直线解析式,即可得到点A的坐标;

2)直接在图象上找到时,x的取值范围;

3)过点A交点为E即可得出点D与点O重合的时候,的周长最短,即可得出点D的坐标;

4)分三种情况考虑:当四边形OAQ1C为平行四边形时;当四边形OQ2AC为平行四边形时;当四边形OACQ3为平行四边形时,分别求出点Q的坐标即可.

1)联立两直线解析式可得

解得:

A的坐标为(63

2)由点A63)及图象知,当时,

3

过点A交点为E,由图可知点B关于直线AE的对称点为点O

当点D与点O重合的时候,的周长最短

即为CO+BC=6+6

此时点D的坐标为(00

4)存在点,使以为顶点的四边形是平行四边形

如图所示,分三种情况考虑:

当四边形OAQ1C为平行四边形时,

Q1的横坐标为6,纵坐标为点C的纵坐标+3=9

Q1的坐标为(69

当四边形OQ2AC为平行四边形时,

Q2的横坐标为6,纵坐标为点A的纵坐标-6=-3

Q2的坐标为(6-3

当四边形OACQ3为平行四边形时,

Q3关于OC的对称点为点A

Q3的坐标为(-63

综上点Q的坐标为:(69)或(6-3)或-63.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网