题目内容
【题目】如图,已知在Rt△ABC中,∠C=90°,AD是∠BAC的角分线.
(1)以AB上的一点O为圆心,AD为弦在图中作出⊙O.(不写作法,保留作图痕迹);
(2)试判断直线BC与⊙O的位置关系,并证明你的结论.
(3)若∠B=30°,计算S△DAC:S△ABC的值.
【答案】(1)图形见解析(2)相切;(3)1:3
【解析】
试题(1)因为AD是弦,所以圆心O即在AB上,也在AD的垂直平分线上;
(2)因为D在圆上,所以只要能证明OD⊥BC就说明BC为⊙O的切线;
(3)根据直角三角形的性质得到CD=AD,于是得到BC=CD+BD=CD+AD=3CD,根据三角形的面积公式即可得到结论.
试题解析:
(1)如图所示,
(2)相切;理由如下:
证明:连结OD,
∵OA=OD,
∴∠OAD=∠ODA
∵AD是BAC的角平分线,则∠OAD=∠DAC,
∴∠ODA=∠DAC,
∵AC⊥BC,则∠DAC+∠ADC=90°,
∴∠ODA+∠ADC=90°,即∠ODC=90°,
∴OD⊥BC,
即BC是⊙O的切线;
(3)∵在Rt△ACD中,∠CAD=30°,
∴CD=AD,
∴BC=CD+BD=CD+AD=3CD,
∴S△DAC= ,S△ABC==;
∴S△DAC:S△ABC=: =1:3.
练习册系列答案
相关题目