题目内容
【题目】如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,0A1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2019的坐标是_____.
【答案】(﹣21009,21009)
【解析】
利用等腰直角三角形的性质可得出部分点An的坐标,根据点的坐标的变化可得出变化规律“点A8n+3的坐标为(﹣24n+1,24n+1)(n为自然数)”,结合2019=252×8+3即可得出点A2019的坐标.
解:由等腰直角三角形的性质,可知:A1(1,1),A2(0,2),A3(﹣2,2),A4(0,﹣4),A5(﹣4,﹣4),A6(0,﹣8),A7(8,﹣8),A8(16,0),A9(16,16),A10(0,32),A11(﹣32,32),…,
∴点A8n+3的坐标为(﹣24n+1,24n+1)(n为自然数).
∵2019=252×8+3,∴点A2019的坐标为(﹣24×252+1,24×252+1),即(﹣21009,21009),
故答案为(﹣21009,21009).
【题目】某企业为杭州计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:
月份x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
价格y1(元/件) | 560 | 580 | 600 | 620 | 640 | 660 | 680 | 700 | 720 |
随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1 与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润.