题目内容

【题目】如图,梯形ABCD中,AD∥BC,对角线AC,DB交于点O,如果SAOD=1,SBOC=3,那么SAOB=

【答案】
【解析】解:∵AD∥BC,∴△AOD∽△COB,
∵SAOD=1,SBOC=3,即SAOD:SBOC=1:3,
∴OA:OC=1:
∵SAOB与SBOC高相同,
∴SAOB:SBOC=1:
则SAOB=
所以答案是:
【考点精析】解答此题的关键在于理解梯形的定义的相关知识,掌握一组对边平行,另一组对边不平行的四边形是梯形.两腰相等的梯形是等腰梯形,以及对相似三角形的判定与性质的理解,了解相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网