题目内容
【题目】如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm.
求:
(1)△ABC的面积;
(2)CD的长;
(3)作出△ABC的边AC上的中线BE,并求出△ABE的面积;
(4)作出△BCD的边BC边上的高DF,当BD=11cm时,试求出DF的长.
【答案】(1)S△ABC=30cm2,(2)CD=cm,(3)S△ABE=15cm2,(4)DF=cm.
【解析】
试题分析:(1)根据直角三角形面积的求法,即可得出△ABC的面积,
(2)根据三角形的面积公式即可求得CD的长,
(3)根据中线的性质可得出△ABE和△BCE的面积相等,从而得出答案,
(4)过D点作DF垂直于BC交BC与F,根据△BCD的面积即可求出DF.
解:(1)∵∠ACB=90°,BC=12cm,AC=5cm,
∴S△ABC=BC×AC=30cm2,
(2)∵S△ABC=AB×CD=30cm2,
∴CD=30÷AB=cm,
(3)S△ABE=S△ABC=×30=15cm2,
(4)∵S△BCD=BD×CD=BCDF,
∴BDCD=BCDF,
∴11×=12×DF,
∴DF=11×=cm.
练习册系列答案
相关题目
【题目】为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2015年4月份用电量的调查结果:
居民(户) | 1 | 2 | 3 | 4 |
月用电量(度/户) | 30 | 42 | 50 | 51 |
那么关于这10户居民月用电量(单位:度),下列说法错误的是( )
A.中位数是50 B.众数是51 C.方差是42 D.极差是21