题目内容
【题目】某年级380名师生秋游,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表.
甲种客车 | 乙种客车 | |
载客量(座/辆) | 60 | 45 |
租金(元/辆) | 550 | 450 |
(1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数表达式;
(2)当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少元?
【答案】
(1)解:由题意,得
y=550x+450(7﹣x),
化简,得y=100x+3150,
即y(元)与x(辆)之间的函数表达式是y=100x+3150
(2)解:由题意,得
60x+45(7﹣x)≥380,
解得,x≥ .
∵y=100x+3150,
∴k=100>0,
∴x=5时,租车费用最少,最少为:y=100×5+3150=3650(元),
即当甲种客车有5辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是3650元.
【解析】(1)根据表格可以求出y(元)与x(辆)之间的函数表达式;(2)由表格中的数据可以得到甲乙两辆车的载客量应至少为380人,从而可以列出相应的不等式得到x的值,因为x为整数,从而可以解答本题.
练习册系列答案
相关题目