题目内容
【题目】某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如下表:
原进价(元/张) | 零售价(元/张) | 成套售价(元/套) | |
餐桌 | a | 380 | 940 |
餐椅 | 160 |
已知用600元购进的餐椅数量与用1300元购进的餐桌数量相同.
(1)求表中a的值;
(2)该商场计划购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.若将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售,请问怎样进货,才能获得最大利润?最大利润是多少?
【答案】(1)a=260;(2)购进餐桌30张、餐椅170张时,才能获得最大利润,最大利润是9200元.
【解析】
(1)用含a的代数式分别表示出600元购进的餐椅数量与用1300元购进的餐桌数量,再根据二者数量相等即可列出关于a的方程,解方程并检验即得结果;
(2)设购进餐桌x张,销售利润为W元.根据购进总数量不超过200张,得出关于x的一元一次不等式,解不等式即可求出x的取值范围,再根据“总利润=成套销售的利润+零售餐桌的利润+零售餐椅的利润”即可得出W关于x的一次函数,然后根据一次函数的性质即可解决问题.
解:(1)根据题意,得:,
解得:a=260,
经检验:a=260是所列方程的解,
∴a=260;
(2)设购进餐桌x张,则购进餐椅(5x+20)张,销售利润为W元.
由题意得:x+5x+20≤200,解得:x≤30.
∵a=260,∴餐桌的进价为260元/张,餐椅的进价为120元/张.
依题意可知:
W=x×(940﹣260﹣4×120)+x×(380﹣260)+(5x+20﹣x×4)×(160﹣120)=280x+800,
∵k=280>0,
∴W随x的增大而增大,
∴当x=30时,W取最大值,最大值为9200元.
故购进餐桌30张、餐椅170张时,才能获得最大利润,最大利润是9200元.