题目内容
【题目】如图,已知AB∥CD,∠E=90°,那么∠B+∠D等于多少度?为什么?
解:过点E作EF∥AB,
得∠B+∠BEF=180°(________________________),
因为AB∥CD(已知),
EF∥AB(所作),
所以EF//CD(________________________).
得________________________(两直线平行,同旁内角互补),
所以∠B+∠BEF+∠DEF+∠D=________°(__________).
即∠B+∠BED+∠D=___________°.
因为∠BED=90°(已知),
所以∠B+∠D=___________°(等式性质)
【答案】两直线平行,同旁内角互补;如果两条直线都与第三条直线平行,那么这两条直线也互相平行;∠D+∠DEF=180°;360;等式性质;360;270.
【解析】
过E作EF平行于AB,利用两直线平行得到一对同旁内角互补,再由AB与CD平行,利用平行于同一条直线的两直线平行,得到EF与CD平行,利用两直线平行得到又一对同旁内角互补,两等式相加,可得出∠B+∠BED+∠D=360°,将∠BED度数代入即可求出∠B+∠D的度数.
解:过点E作EF∥AB,
得∠B+∠BEF=180°(两直线平行同旁内角互补),
因为AB∥CD(已知),
EF∥AB(所作),
所以EF∥CD(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).
得∠D+∠DEF=180°(两直线平行,同旁内角互补),
所以∠B+∠BEF+∠DEF+∠D=360°(等式性质).
即∠B+∠BED+∠D=360°.
因为∠BED=90°(已知),
所以∠B+∠D=270°(等式性质).
练习册系列答案
相关题目