题目内容

【题目】如图,已知直线l1∥l2,直线l3和直线l1,l2交于点C和D,直线l3上有一点P。

(1)如图1,若P点在C,D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化,并说明理由;

(2)若点P在C,D两点的外侧运动时(P点与点C,D不重合,如图2和3),试写出∠PAC,∠APB,∠PBD之间的关系,并说明理由。(图3只写结论,不写理由)

【答案】(1)当P点在C、D之间运动时,∠APB=∠PAC+∠PBD(2)当点P在C、D两点的外侧运动,且在l1上方时,∠PBD=∠PAC+∠APB.(3)∠PAC=∠PBD+∠APB

【解析】分析:(1)P点在C、D之间运动时,首先过点P,,可得,根据两直线平行,内错角相等,即可求得:APB=PAC+PBD;

(2)当点PC、D两点的外侧运动时,由直线,根据两直线平行,同位角相等与三角形外角的性质,即可求得: PBD=PAC+APB.

本题解析:

(1)如图①,当P点在C、D之间运动时,∠APB=PAC+PBD.

理由如下:

过点PPEl1

l1l2

PEl2l1

∴∠PAC=1,PBD=2,

∴∠APB=1+2=PAC+PBD;

(2)如图②,当点PC、D两点的外侧运动,且在l1上方时,∠PBD=PAC+APB.

理由如下:

l1l2

∴∠PEC=PBD,

∵∠PEC=PAC+APB,

∴∠PBD=PAC+APB.

(3)如图(3),当点PC、D两点的外侧运动,且在 下方时,∠PAC=PBD+APB.

理由如下:理由如下:

∴∠PED=PAC,

∵∠PED=PBD+APB,

∴∠PAC=PBD+APB.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网