题目内容
【题目】如图,已知直线l1∥l2,直线l3和直线l1,l2交于点C和D,直线l3上有一点P。
(1)如图1,若P点在C,D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化,并说明理由;
(2)若点P在C,D两点的外侧运动时(P点与点C,D不重合,如图2和3),试写出∠PAC,∠APB,∠PBD之间的关系,并说明理由。(图3只写结论,不写理由)
【答案】(1)当P点在C、D之间运动时,∠APB=∠PAC+∠PBD(2)当点P在C、D两点的外侧运动,且在l1上方时,∠PBD=∠PAC+∠APB.(3)∠PAC=∠PBD+∠APB
【解析】分析:(1)当P点在C、D之间运动时,首先过点P作,由,可得,根据两直线平行,内错角相等,即可求得:∠APB=∠PAC+∠PBD;
(2)当点P在C、D两点的外侧运动时,由直线,根据两直线平行,同位角相等与三角形外角的性质,即可求得: ∠PBD=∠PAC+∠APB.
本题解析:
(1)如图①,当P点在C、D之间运动时,∠APB=∠PAC+∠PBD.
理由如下:
过点P作PE∥l1,
∵l1∥l2,
∴PE∥l2∥l1,
∴∠PAC=∠1,∠PBD=∠2,
∴∠APB=∠1+∠2=∠PAC+∠PBD;
(2)如图②,当点P在C、D两点的外侧运动,且在l1上方时,∠PBD=∠PAC+∠APB.
理由如下:
∵l1∥l2,
∴∠PEC=∠PBD,
∵∠PEC=∠PAC+∠APB,
∴∠PBD=∠PAC+∠APB.
(3)如图(3),当点P在C、D两点的外侧运动,且在 下方时,∠PAC=∠PBD+∠APB.
理由如下:理由如下:
∵ ∥,
∴∠PED=∠PAC,
∵∠PED=∠PBD+∠APB,
∴∠PAC=∠PBD+∠APB.
练习册系列答案
相关题目