题目内容
【题目】如图,一次函数y1=x+4的图象与反比例函数y2=的图象交于A(﹣1,a),B两点,与x轴交于点C.
(1)求k.
(2)根据图象直接写出y1>y2时,x的取值范围.
(3)若反比例函数y2=与一次函数y1=x+4的图象总有交点,求k的取值.
【答案】(1)-3;(2)﹣3<x<﹣1;(3)k≥﹣4且k≠0.
【解析】
(1)把点A坐标代入一次函数关系式可求出a的值,确定点A的坐标,再代入反比例函数关系式可求出k的值,
(2)一次函数与反比例函数联立,可求出交点B的坐标,再根据图象可得出当y1>y2时,x的取值范围.
(3)若反比例函数y2=与一次函数y1=x+4的图象总有交点,就是x2+4x﹣k=0有实数根,根据根的判别式求出k的取值范围.
(1)一次函数y1=x+4的图象过A(﹣1,a),
∴a=﹣1+4=3,
∴A(﹣1,3)代入反比例函数y2=得,
k=﹣3;
(2)由(1)得反比例函数,由题意得,
,解得,,,
∴点B(﹣3,1)
当y1>y2,即一次函数的图象位于反比例函数图象上方时,
自变量的取值范围为:﹣3<x<﹣1;
(3)若反比例函数y2=与一次函数y1=x+4的图象总有交点,
即,方程=x+4有实数根,也就是x2+4x﹣k=0有实数根,
∴16+4k≥0,
解得,k≥﹣4,
∵k≠0,
∴k的取值范围为:k≥﹣4且k≠0.
练习册系列答案
相关题目