题目内容
【题目】如图,在△ABC中,D是∠BAC的平分线上一点,BD⊥AD于D,DE∥AC交AB于E,请说明AE=BE.
【答案】见解析
【解析】
试题分析:根据两直线平行,内错角相等求出∠ADE=∠CAD,根据AD是∠BAC的平分线可以得到∠EAD=∠CAD,所以∠ADE=∠EAD,根据等角对等边的性质得AE=DE,又∠ADE+∠BDE=90°,∠EAD+∠ABD=90°,根据等角的余角相等的性质∠ABD=∠BDE,所以BE=DE,因此AE=BE.
证明:∵DE∥AC,
∴∠ADE=∠CAD,
∵AD是∠BAC的平分线,
∴∠EAD=∠CAD,
∴∠ADE=∠EAD,
∴AE=DE,
∵BD⊥AD,
∴∠ADE+∠BDE=90°,∠EAD+∠ABD=90°,
∴∠ABD=∠BDE,
∴BE=DE,
∴AE=BE.
练习册系列答案
相关题目