题目内容
【题目】概念学习
规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,例如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把 (a≠0)记作 a,读作“a的圈n次方”.
初步探究
(1)直接写出计算结果:2③=________,=________;
(2)关于除方,下列说法错误的是________
A.任何非零数的圈2次方都等于1; B.对于任何正整数n,1=1;
C.3④=4③ ; D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.
深入思考
我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?
(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.
(﹣3)④=________;5⑥=________;=________.
(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于________;
(3)算一算:24÷23+(-16)×2④.
【答案】初步探究(1);—8;(2)C;深入思考(1);;28;(2);(3)—1.
【解析】
理解除方运算,利用除方运算的法则和意义解决初步探究,通过除方的法则,把深入思考的除方写成幂的形式解决(1),总结(1)得到通项(2).根据法则计算出(3)的结果.
初步探究
(1)2③=2÷2÷2=,(﹣)⑤=(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)=1÷(﹣)÷(﹣)÷(﹣)=(﹣2)÷(﹣)÷(﹣)=﹣8
故答案为:,﹣8;
(2)A、任何非零数的圈2次方就是两个相同数相除,所以都等于1;所以选项A正确;
B.因为多少个1相除都是1,所以对于任何正整数n,1都等于1;所以选项B正确;
C.3④=3÷3÷3÷3=,4③=4÷4÷4=,则 3④≠4③;所以选项C错误;
D.负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项D正确;
本题选择说法错误的.
故选C;
深入思考
(1)(﹣3)
5⑥=5÷5÷5÷5÷5÷5=1×()4=;
(﹣)⑩=(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)
=1×2×2×2×2×2×2×2×2
=28.
故答案为:,28.
(2)a=a÷a÷a…÷a=1÷an﹣2=.
(3)原式=24÷8+(﹣16)×
=3﹣4
=﹣1.
【题目】某天早上,一辆交通巡逻车从A地出发,在东西向的马路上巡视,中午到达B地,如果规定向东行驶为正,向西行驶为负,行驶纪录如下:(单位:km)
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 |
+15 | -8 | +6 | +12 | -4 | +5 | -10 |
(1)B地在A地哪个方向,与A地相距多少千米?
(2)巡逻车在巡逻过程中,离开A地最远是多少千米?
(3)若每km耗油0.1升,问共耗油多少升?