题目内容

【题目】若等腰三角形一腰上的高是腰长的一半,则这个等腰三角形的底角是(
A.75°或15°
B.75°
C.15°
D.75°或30°

【答案】A
【解析】解:当等腰三角形是锐角三角形时,如图1所示
∵CD⊥AB,CD= AC,
∴sin∠A= =
∴∠A=30°,
∴∠B=∠ACB=75°;
当等腰三角形是钝角三角形时,如图2示,

∵CD⊥AB,即在直角三角形ACD中,CD= AC,
∴∠CAD=30°,
∴∠CAB=150°,
∴∠B=∠ACB=15°.
故其底角为15°或75°.
故选A.
【考点精析】本题主要考查了等腰三角形的性质和含30度角的直角三角形的相关知识点,需要掌握等腰三角形的两个底角相等(简称:等边对等角);在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半才能正确解答此题.

练习册系列答案
相关题目

【题目】问题提出:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1x5或2×3的矩形(axb 的矩形指边长分别为a,b的矩形)?

问题探究:我们先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题.

探究一:

如图①,当n=5时,可将正方形分割为五个1×5的矩形.

如图②,当n=6时,可将正方形分割为六个2×3的矩形.

如图③,当n=7时,可将正方形分割为五个1×5的矩形和四个2×3的矩形

如图④,当n=8时,可将正方形分割为八个1×5的矩形和四个2×3的矩形

如图⑤,当n=9时,可将正方形分割为九个1×5的矩形和六个2×3的矩形

探究二:

当n=10,11,12,13,14时,分别将正方形按下列方式分割:

所以,当n=10,11,12,13,14时,均可将正方形分割为一个5×5的正方形、一个(n﹣5 )×( n﹣5 )的正方形和两个5×(n﹣5)的矩形.显然,5×5的正方形和5×(n﹣5)的矩形均可分割为1×5的矩形,而(n﹣5)×(n﹣5)的正方形是边长分别为5,6,7,8,9 的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.

探究三:

当n=15,16,17,18,19时,分别将正方形按下列方式分割:

请按照上面的方法,分别画出边长为18,19的正方形分割示意图.

所以,当n=15,16,17,18,19时,均可将正方形分割为一个10×10的正方形、一个(n﹣10 )×(n﹣10)的正方形和两个10×(n﹣10)的矩形.显然,10×10的正方形和10×(n﹣10)的矩形均可分割为1x5的矩形,而(n﹣10)×(n﹣10)的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.

问题解决:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1×5或2×3的矩形?请按照上面的方法画出分割示意图,并加以说明.

实际应用:如何将边长为61的正方形分割为一些1×5或2×3的矩形?(只需按照探究三的方法画出分割示意图即可)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网