题目内容
已知圆锥的底面半径为3cm,母线长为9cm,C为母线PB的中点,在圆锥的侧面上,从A到C的最短距离是______.
:圆锥的底面周长是6π,则6π=
,
∴n=120°,
即圆锥侧面展开图的圆心角是120°,
∴∠APB=60°,
∵PA=PB,
∴△PAB是等边三角形,
∵C是PB中点,
∴AC⊥PB,
∴∠ACP=90°,
∵在圆锥侧面展开图中AP=9,PC=4.5,
∴在圆锥侧面展开图中AC=
=
最短距离是
cm.
故答案为:
cm.
nπ×9 |
180 |
∴n=120°,
即圆锥侧面展开图的圆心角是120°,
∴∠APB=60°,
∵PA=PB,
∴△PAB是等边三角形,
∵C是PB中点,
∴AC⊥PB,
∴∠ACP=90°,
∵在圆锥侧面展开图中AP=9,PC=4.5,
∴在圆锥侧面展开图中AC=
AP2-PC2 |
9
| ||
2 |
最短距离是
9
| ||
2 |
故答案为:
9
| ||
2 |
练习册系列答案
相关题目