题目内容

如图,已知BC是⊙O的直径,P是⊙O上一点,A是
BP
的中点,AD⊥BC于点D,BP与AD相交于点E.
(1)当BC=6且∠ABC=60°时,求
AB
的长;
(2)求证:AE=BE.
(3)过A点作AMBP,求证:AM是⊙O的切线.
(本题满分6分)
(1)连接OA,AB,
∵BC是⊙O的直径,
∴∠BAC=90°,
∵∠ABC=60°,
∵∠ACB=30°,
∴∠AOB=60°,
又∵OB=
1
2
BC=
1
2
×6=3,
∴AB弧的长为:l=
2πR
6
=
2×π×3
6
=π;

(2)证明:∵点A是
BP
的中点,
BA
=
AP

∴∠C=∠ABP.
∵BC为⊙O的直径,
∴∠BAC=90°,
即∠BAD+∠CAD=90°.
又∵AD⊥BC,
∴∠ADC=90°,
∴∠BAD=∠C,
∴∠ABP=∠BAD,
∴AE=BE;

(3)证明:∵A是
BP
的中点,
∴AO⊥BP,
∵AMBP,
∴AM⊥AO,
即AM是⊙O的切线.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网