题目内容
【题目】如图,⊙O是△ABC的外接圆,AB是直径,D是AC中点,直线OD与⊙O相交于E,F两点,P是⊙O外一点,P在直线OD上,连接PA,PC,AF,且满足∠PCA=∠ABC.
(1)求证:PA是⊙O的切线;
(2)证明:;
(3)若BC=8,tan∠AFP=,求DE的长.
【答案】(1)见解析;(2)见解析;(3)DE=.
【解析】
(1)先判断出PA=PC,得出∠PAC=∠PCA,再判断出∠ACB=90°,得出∠CAB+∠CBA=90°,再判断出∠PCA+∠CAB=90°,得出∠CAB+∠PAC=90°,即可得出结论;
(2)先判断出Rt△AOD∽Rt△POA,得出OA2=OPOD,进而得出
,,即可得出结论;
(3)在Rt△ADF中,设AD=a,得出DF=3a.,AO=OF=3a-4,最后用勾股定理得出OD2+AD2=AO2,即可得出结论.
(1)证明∵D是弦AC中点,∴OD⊥AC,∴PD是AC的中垂线,∴PA=PC,∴∠PAC=∠PCA.
∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°.
又∵∠PCA=∠ABC,∴∠PCA+∠CAB=90°,∴∠CAB+∠PAC=90°,即AB⊥PA,∴PA是⊙O的切线;
(2)证明:由(1)知∠ODA=∠OAP=90°,
∴Rt△AOD∽Rt△POA,∴,∴.
又,∴,即.
(3)解:在Rt△ADF中,设AD=a,则DF=3a.,AO=OF=3a-4.
∵,即,解得,∴DE=OE-OD=3a-8=.
练习册系列答案
相关题目